Finiteness Properties of Arithmetic Groups Acting on Twin Buildings

Providing an accessible approach to a special case of the Rank Theorem, the present text considers the exact finiteness properties of S-arithmetic subgroups of split reductive groups in positive characteristic when S contains only two places. While the proof of the general Rank Theorem uses an invol...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Witzel, Stefan (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2014.
Σειρά:Lecture Notes in Mathematics, 2109
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 02419nam a22005295i 4500
001 978-3-319-06477-2
003 DE-He213
005 20151204144113.0
007 cr nn 008mamaa
008 140716s2014 gw | s |||| 0|eng d
020 |a 9783319064772  |9 978-3-319-06477-2 
024 7 |a 10.1007/978-3-319-06477-2  |2 doi 
040 |d GrThAP 
050 4 |a QA174-183 
072 7 |a PBG  |2 bicssc 
072 7 |a MAT002010  |2 bisacsh 
082 0 4 |a 512.2  |2 23 
100 1 |a Witzel, Stefan.  |e author. 
245 1 0 |a Finiteness Properties of Arithmetic Groups Acting on Twin Buildings  |h [electronic resource] /  |c by Stefan Witzel. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2014. 
300 |a XVI, 113 p. 11 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 2109 
505 0 |a Basic Definitions and Properties -- Finiteness Properties of G(Fq[t]) -- Finiteness Properties of G(Fq[t; t-1]) -- Affine Kac-Moody Groups -- Adding Places. 
520 |a Providing an accessible approach to a special case of the Rank Theorem, the present text considers the exact finiteness properties of S-arithmetic subgroups of split reductive groups in positive characteristic when S contains only two places. While the proof of the general Rank Theorem uses an involved reduction theory due to Harder, by imposing the restrictions that the group is split and that S has only two places, one can instead make use of the theory of twin buildings. 
650 0 |a Mathematics. 
650 0 |a Group theory. 
650 0 |a Geometry. 
650 0 |a Algebraic topology. 
650 0 |a Manifolds (Mathematics). 
650 0 |a Complex manifolds. 
650 1 4 |a Mathematics. 
650 2 4 |a Group Theory and Generalizations. 
650 2 4 |a Geometry. 
650 2 4 |a Manifolds and Cell Complexes (incl. Diff.Topology). 
650 2 4 |a Algebraic Topology. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319064765 
830 0 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 2109 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-06477-2  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
912 |a ZDB-2-LNM 
950 |a Mathematics and Statistics (Springer-11649)