Homological Mirror Symmetry and Tropical Geometry

The relationship between Tropical Geometry and Mirror Symmetry goes back to the work of Kontsevich and Y. Soibelman (2000), who applied methods of non-archimedean geometry (in particular, tropical curves) to Homological Mirror Symmetry. In combination with the subsequent work of Mikhalkin on the “tr...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Castano-Bernard, Ricardo (Επιμελητής έκδοσης), Catanese, Fabrizio (Επιμελητής έκδοσης), Kontsevich, Maxim (Επιμελητής έκδοσης), Pantev, Tony (Επιμελητής έκδοσης), Soibelman, Yan (Επιμελητής έκδοσης), Zharkov, Ilia (Επιμελητής έκδοσης)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2014.
Σειρά:Lecture Notes of the Unione Matematica Italiana, 15
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04128nam a22005175i 4500
001 978-3-319-06514-4
003 DE-He213
005 20151103123407.0
007 cr nn 008mamaa
008 141007s2014 gw | s |||| 0|eng d
020 |a 9783319065144  |9 978-3-319-06514-4 
024 7 |a 10.1007/978-3-319-06514-4  |2 doi 
040 |d GrThAP 
050 4 |a QA564-609 
072 7 |a PBMW  |2 bicssc 
072 7 |a MAT012010  |2 bisacsh 
082 0 4 |a 516.35  |2 23 
245 1 0 |a Homological Mirror Symmetry and Tropical Geometry  |h [electronic resource] /  |c edited by Ricardo Castano-Bernard, Fabrizio Catanese, Maxim Kontsevich, Tony Pantev, Yan Soibelman, Ilia Zharkov. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2014. 
300 |a XI, 436 p. 43 illus., 18 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes of the Unione Matematica Italiana,  |x 1862-9113 ;  |v 15 
505 0 |a Oren Ben-Bassat and Elizabeth Gasparim: Moduli Stacks of Bundles on Local Surfaces -- David Favero, Fabian Haiden and Ludmil Katzarkov: An orbit construction of phantoms, Orlov spectra and Knörrer Periodicity -- Stéphane Guillermou and Pierre Schapira: Microlocal theory of sheaves and Tamarkin’s non displaceability theorem -- Sergei Gukov and Piotr Sułkowski: A-polynomial, B-model and Quantization -- M. Kapranov, O. Schiffmann, E. Vasserot: Spherical Hall Algebra of Spec(Z) -- Maxim Kontsevich and Yan Soibelman: Wall-crossing structures in Donaldson-Thomas invariants, integrable systems and mirror Symmetry -- Grigory Mikhalkin and Ilia Zharkov: Tropical eigen wave and intermediate Jacobians -- Andrew Neitzke: Notes on a new construction of hyperkahler metrics -- Helge Ruddat: Mirror duality of Landau-Ginzburg models via Discrete Legendre Transforms -- Nicolo Sibilla: Mirror Symmetry in dimension one and Fourier-Mukai transforms -- Alexander Soibelman: The very good property for moduli of parabolic bundles and the additive Deligne-Simpson problem. 
520 |a The relationship between Tropical Geometry and Mirror Symmetry goes back to the work of Kontsevich and Y. Soibelman (2000), who applied methods of non-archimedean geometry (in particular, tropical curves) to Homological Mirror Symmetry. In combination with the subsequent work of Mikhalkin on the “tropical” approach to Gromov-Witten theory, and the work of Gross and Siebert, Tropical Geometry has now become a powerful tool. Homological Mirror Symmetry is the area of mathematics concentrated around several categorical equivalences connecting symplectic and holomorphic (or algebraic) geometry. The central ideas first appeared in the work of Maxim Kontsevich (1993). Roughly speaking, the subject can be approached in two ways: either one uses Lagrangian torus fibrations of Calabi-Yau manifolds (the so-called Strominger-Yau-Zaslow picture, further developed by Kontsevich and Soibelman) or one uses Lefschetz fibrations of symplectic manifolds (suggested by Kontsevich and further developed by Seidel). Tropical Geometry studies piecewise-linear objects which appear as “degenerations” of the corresponding algebro-geometric objects. 
650 0 |a Mathematics. 
650 0 |a Algebraic geometry. 
650 0 |a Differential geometry. 
650 1 4 |a Mathematics. 
650 2 4 |a Algebraic Geometry. 
650 2 4 |a Differential Geometry. 
700 1 |a Castano-Bernard, Ricardo.  |e editor. 
700 1 |a Catanese, Fabrizio.  |e editor. 
700 1 |a Kontsevich, Maxim.  |e editor. 
700 1 |a Pantev, Tony.  |e editor. 
700 1 |a Soibelman, Yan.  |e editor. 
700 1 |a Zharkov, Ilia.  |e editor. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319065137 
830 0 |a Lecture Notes of the Unione Matematica Italiana,  |x 1862-9113 ;  |v 15 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-06514-4  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)