Astronomy and Big Data A Data Clustering Approach to Identifying Uncertain Galaxy Morphology /

With the onset of massive cosmological data collection through media such as the Sloan Digital Sky Survey (SDSS), galaxy classification has been accomplished for the most part with the help of citizen science communities like Galaxy Zoo. Seeking the wisdom of the crowd for such Big Data processing h...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Edwards, Kieran Jay (Συγγραφέας), Gaber, Mohamed Medhat (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2014.
Σειρά:Studies in Big Data, 6
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03531nam a22005295i 4500
001 978-3-319-06599-1
003 DE-He213
005 20151204181705.0
007 cr nn 008mamaa
008 140412s2014 gw | s |||| 0|eng d
020 |a 9783319065991  |9 978-3-319-06599-1 
024 7 |a 10.1007/978-3-319-06599-1  |2 doi 
040 |d GrThAP 
050 4 |a Q342 
072 7 |a UYQ  |2 bicssc 
072 7 |a COM004000  |2 bisacsh 
082 0 4 |a 006.3  |2 23 
100 1 |a Edwards, Kieran Jay.  |e author. 
245 1 0 |a Astronomy and Big Data  |h [electronic resource] :  |b A Data Clustering Approach to Identifying Uncertain Galaxy Morphology /  |c by Kieran Jay Edwards, Mohamed Medhat Gaber. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2014. 
300 |a XII, 105 p. 54 illus., 24 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Studies in Big Data,  |x 2197-6503 ;  |v 6 
505 0 |a Introduction -- Astronomy, Galaxies and Stars: An Overview -- Astronomical Data Mining -- Adopted Data Mining Methods -- Research Methodology -- Development of Data Mining Models -- Experimentation Results -- Conclusion and Future Work. 
520 |a With the onset of massive cosmological data collection through media such as the Sloan Digital Sky Survey (SDSS), galaxy classification has been accomplished for the most part with the help of citizen science communities like Galaxy Zoo. Seeking the wisdom of the crowd for such Big Data processing has proved extremely beneficial. However, an analysis of one of the Galaxy Zoo morphological classification data sets has shown that a significant majority of all classified galaxies are labelled as “Uncertain”. This book reports on how to use data mining, more specifically clustering, to identify galaxies that the public has shown some degree of uncertainty for as to whether they belong to one morphology type or another. The book shows the importance of transitions between different data mining techniques in an insightful workflow. It demonstrates that Clustering enables to identify discriminating features in the analysed data sets, adopting a novel feature selection algorithms called Incremental Feature Selection (IFS). The book shows the use of state-of-the-art classification techniques, Random Forests and Support Vector Machines to validate the acquired results. It is concluded that a vast majority of these galaxies are, in fact, of spiral morphology with a small subset potentially consisting of stars, elliptical galaxies or galaxies of other morphological variants. 
650 0 |a Engineering. 
650 0 |a Data mining. 
650 0 |a Artificial intelligence. 
650 0 |a Observations, Astronomical. 
650 0 |a Astronomy  |x Observations. 
650 0 |a Computational intelligence. 
650 1 4 |a Engineering. 
650 2 4 |a Computational Intelligence. 
650 2 4 |a Artificial Intelligence (incl. Robotics). 
650 2 4 |a Astronomy, Observations and Techniques. 
650 2 4 |a Data Mining and Knowledge Discovery. 
700 1 |a Gaber, Mohamed Medhat.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319065984 
830 0 |a Studies in Big Data,  |x 2197-6503 ;  |v 6 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-06599-1  |z Full Text via HEAL-Link 
912 |a ZDB-2-ENG 
950 |a Engineering (Springer-11647)