Input Modeling with Phase-Type Distributions and Markov Models Theory and Applications /

Containing a summary of several recent results on Markov-based input modeling in a coherent notation, this book introduces and compares algorithms for parameter fitting and gives an overview of available software tools in the area. Due to progress made in recent years with respect to new algorithms...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Buchholz, Peter (Συγγραφέας), Kriege, Jan (Συγγραφέας), Felko, Iryna (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2014.
Σειρά:SpringerBriefs in Mathematics,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04236nam a22005655i 4500
001 978-3-319-06674-5
003 DE-He213
005 20151103123229.0
007 cr nn 008mamaa
008 140520s2014 gw | s |||| 0|eng d
020 |a 9783319066745  |9 978-3-319-06674-5 
024 7 |a 10.1007/978-3-319-06674-5  |2 doi 
040 |d GrThAP 
050 4 |a QA273.A1-274.9 
050 4 |a QA274-274.9 
072 7 |a PBT  |2 bicssc 
072 7 |a PBWL  |2 bicssc 
072 7 |a MAT029000  |2 bisacsh 
082 0 4 |a 519.2  |2 23 
100 1 |a Buchholz, Peter.  |e author. 
245 1 0 |a Input Modeling with Phase-Type Distributions and Markov Models  |h [electronic resource] :  |b Theory and Applications /  |c by Peter Buchholz, Jan Kriege, Iryna Felko. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2014. 
300 |a XII, 127 p. 42 illus., 35 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a SpringerBriefs in Mathematics,  |x 2191-8198 
505 0 |a 1. Introduction -- 2. Phase Type Distributions -- 3. Parameter Fitting for Phase Type Distributions -- 4. Markovian Arrival Processes -- 5. Parameter Fitting of MAPs -- 6. Stochastic Models including PH Distributions and MAPs -- 7. Software Tools -- 8. Conclusion -- References -- Index. 
520 |a Containing a summary of several recent results on Markov-based input modeling in a coherent notation, this book introduces and compares algorithms for parameter fitting and gives an overview of available software tools in the area. Due to progress made in recent years with respect to new algorithms to generate PH distributions and Markovian arrival processes from measured data, the models outlined are useful alternatives to other distributions or stochastic processes used for input modeling. Graduate students and researchers in applied probability, operations research and computer science along with practitioners using simulation or analytical models for performance analysis and capacity planning will find the unified notation and up-to-date results presented useful. Input modeling is the key step in model based system analysis to adequately describe the load of a system using stochastic models. The goal of input modeling is to find a stochastic model to describe a sequence of measurements from a real system to model for example the inter-arrival times of packets in a computer network or failure times of components in a manufacturing plant. Typical application areas are performance and dependability analysis of computer systems, communication networks, logistics or manufacturing systems but also the analysis of biological or chemical reaction networks and similar problems. Often the measured values have a high variability and are correlated. It’s been known for a long time that Markov based models like phase type distributions or Markovian arrival processes are very general and allow one to capture even complex behaviors. However, the parameterization of these models results often in a complex and non-linear optimization problem. Only recently, several new results about the modeling capabilities of Markov based models and algorithms to fit the parameters of those models have been published. 
650 0 |a Mathematics. 
650 0 |a Computer science  |x Mathematics. 
650 0 |a Computer mathematics. 
650 0 |a Computer software. 
650 0 |a Mathematical models. 
650 0 |a Probabilities. 
650 1 4 |a Mathematics. 
650 2 4 |a Probability Theory and Stochastic Processes. 
650 2 4 |a Mathematical Modeling and Industrial Mathematics. 
650 2 4 |a Mathematical Software. 
650 2 4 |a Mathematical Applications in Computer Science. 
700 1 |a Kriege, Jan.  |e author. 
700 1 |a Felko, Iryna.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319066738 
830 0 |a SpringerBriefs in Mathematics,  |x 2191-8198 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-06674-5  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)