Meshfree Methods for Partial Differential Equations VII

Meshfree methods, particle methods, and generalized finite element methods have witnessed substantial development since the mid 1990s. The growing interest in these methods is due in part to the fact that they are extremely flexible numerical tools and can be interpreted in a number of ways. For ins...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Griebel, Michael (Επιμελητής έκδοσης), Schweitzer, Marc Alexander (Επιμελητής έκδοσης)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2015.
Σειρά:Lecture Notes in Computational Science and Engineering, 100
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04656nam a22005055i 4500
001 978-3-319-06898-5
003 DE-He213
005 20151125021750.0
007 cr nn 008mamaa
008 141202s2015 gw | s |||| 0|eng d
020 |a 9783319068985  |9 978-3-319-06898-5 
024 7 |a 10.1007/978-3-319-06898-5  |2 doi 
040 |d GrThAP 
050 4 |a QA71-90 
072 7 |a PBKS  |2 bicssc 
072 7 |a MAT006000  |2 bisacsh 
082 0 4 |a 518  |2 23 
245 1 0 |a Meshfree Methods for Partial Differential Equations VII  |h [electronic resource] /  |c edited by Michael Griebel, Marc Alexander Schweitzer. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2015. 
300 |a VIII, 315 p. 138 illus., 39 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Computational Science and Engineering,  |x 1439-7358 ;  |v 100 
505 0 |a F. Franzelin, P. Diehl, D. Pflüger: Spatially adaptive sparse grid collocation for multivariate peridynamic simulations -- G. anzenmüller, S. Hiermaier, M. May: Improvements to the Prototype Micro-Brittle Linear Elasticity Model of Peridynamics -- C. Gaspar: Regularization and Multi-Level Tools in the Method of Fundamental Solution -- S. Bond, R. Lehoucq, S. Rowe: A Galerkin Radial Basis Function Method for Nonlocal Diffusion -- P. Henning, P. Morgenstern, D. Peterseim: Multiscale Partition of Unity Method -- D. Zhou, B. Seibold, D. Shirokoff, P. Chidyagwai, R.R. Rosales: Meshfree Finite Differences for Vector Poisson and Pressure Poisson Equations with Electric Boundary Conditions -- C.T Wu: An Immersed Meshfree Galerkin Approach for Particle-Reinforced Composite Analysis -- A. Jefferies, J. Kuhnert, L. Aschenbrenner, U. Giffhorn: Finite Pointset Method for the Simulation of a Vehicle travelling through a Body of Water -- S.C. Brenner, C.B. Davis, L. Sung: A partition of unity method for the obstacle problem of simply supported Kirchhoff plates -- Q. Du, X. Tian: Robust Discretization of Nonlocal Models Related to Peridynamics -- Z. Dai, M.A. Bessa, S. Li, W.K. Liu: Particle Method Modeling of Nonlocal Multiresolution Continua -- C. Dehning, C. Bierwisch and T. Kraft: Co-simulations of discrete and finite element codes -- S. Wu, M.A. Schweitzer: Numerical Integration of pre-computed Enrichment Functions in the PUM -- P. Diehl, M.A. Schweitzer: Efficient neighbor search for particle methods on GPUs -- M.A. Schweitzer, A. Ziegenhagel: Dispersion Properties of the Partition of Unity Method \& Explicit Dynamics. 
520 |a Meshfree methods, particle methods, and generalized finite element methods have witnessed substantial development since the mid 1990s. The growing interest in these methods is due in part to the fact that they are extremely flexible numerical tools and can be interpreted in a number of ways. For instance, meshfree methods can be viewed as a natural extension of classical finite element and finite difference methods to scattered node configurations with no fixed connectivity. Furthermore, meshfree methods offer a number of advantageous features which are especially attractive when dealing with multiscale phenomena: a priori knowledge about particular local behavior of the solution can easily be introduced in the meshfree approximation space, and coarse-scale approximations can be seamlessly refined with fine-scale information. This volume collects selected papers presented at the Seventh International Workshop on Meshfree Methods, held in Bonn, Germany in September 2013. They address various aspects of this highly dynamic research field and cover topics from applied mathematics, physics and engineering. 
650 0 |a Mathematics. 
650 0 |a Numerical analysis. 
650 0 |a Computer mathematics. 
650 0 |a Applied mathematics. 
650 0 |a Engineering mathematics. 
650 1 4 |a Mathematics. 
650 2 4 |a Computational Mathematics and Numerical Analysis. 
650 2 4 |a Appl.Mathematics/Computational Methods of Engineering. 
650 2 4 |a Numeric Computing. 
700 1 |a Griebel, Michael.  |e editor. 
700 1 |a Schweitzer, Marc Alexander.  |e editor. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319068978 
830 0 |a Lecture Notes in Computational Science and Engineering,  |x 1439-7358 ;  |v 100 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-06898-5  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)