Machine Learning for Adaptive Many-Core Machines - A Practical Approach

The overwhelming data produced everyday and the increasing performance and cost requirements of applications is transversal to a wide range of activities in society, from science to industry. In particular, the magnitude and complexity of the tasks that Machine Learning (ML) algorithms have to solve...

Full description

Bibliographic Details
Main Authors: Lopes, Noel (Author), Ribeiro, Bernardete (Author)
Corporate Author: SpringerLink (Online service)
Format: Electronic eBook
Language:English
Published: Cham : Springer International Publishing : Imprint: Springer, 2015.
Series:Studies in Big Data, 7
Subjects:
Online Access:Full Text via HEAL-Link
LEADER 02988nam a22005055i 4500
001 978-3-319-06938-8
003 DE-He213
005 20151103131329.0
007 cr nn 008mamaa
008 140628s2015 gw | s |||| 0|eng d
020 |a 9783319069388  |9 978-3-319-06938-8 
024 7 |a 10.1007/978-3-319-06938-8  |2 doi 
040 |d GrThAP 
050 4 |a Q342 
072 7 |a UYQ  |2 bicssc 
072 7 |a COM004000  |2 bisacsh 
082 0 4 |a 006.3  |2 23 
100 1 |a Lopes, Noel.  |e author. 
245 1 0 |a Machine Learning for Adaptive Many-Core Machines - A Practical Approach  |h [electronic resource] /  |c by Noel Lopes, Bernardete Ribeiro. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2015. 
300 |a XX, 241 p. 112 illus., 4 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Studies in Big Data,  |x 2197-6503 ;  |v 7 
505 0 |a Introduction -- Supervised Learning -- Unsupervised and Semi-supervised Learning -- Large-Scale Machine Learning. 
520 |a The overwhelming data produced everyday and the increasing performance and cost requirements of applications is transversal to a wide range of activities in society, from science to industry. In particular, the magnitude and complexity of the tasks that Machine Learning (ML) algorithms have to solve are driving the need to devise adaptive many-core machines that scale well with the volume of data, or in other words, can handle Big Data. This book gives a concise view on how to extend the applicability of well-known ML algorithms in Graphics Processing Unit (GPU) with data scalability in mind. It presents a series of new techniques to enhance, scale and distribute data in a Big Learning framework. It is not intended to be a comprehensive survey of the state of the art of the whole field of machine learning for Big Data. Its purpose is less ambitious and more practical: to explain and illustrate existing and novel GPU-based ML algorithms, not viewed as a universal solution for the Big Data challenges but rather as part of the answer, which may require the use of different strategies coupled together. 
650 0 |a Engineering. 
650 0 |a Operations research. 
650 0 |a Decision making. 
650 0 |a Artificial intelligence. 
650 0 |a Computational intelligence. 
650 1 4 |a Engineering. 
650 2 4 |a Computational Intelligence. 
650 2 4 |a Artificial Intelligence (incl. Robotics). 
650 2 4 |a Operation Research/Decision Theory. 
700 1 |a Ribeiro, Bernardete.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319069371 
830 0 |a Studies in Big Data,  |x 2197-6503 ;  |v 7 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-06938-8  |z Full Text via HEAL-Link 
912 |a ZDB-2-ENG 
950 |a Engineering (Springer-11647)