Predicting Real World Behaviors from Virtual World Data

This book addresses prediction, mining and analysis of offline characteristics and behaviors from online data and vice versa. Each chapter will focus on a different aspect of virtual worlds to real world prediction e.g., demographics, personality, location, etc. There is a growing body of literature...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Ahmad, Muhammad Aurangzeb (Επιμελητής έκδοσης), Shen, Cuihua (Επιμελητής έκδοσης), Srivastava, Jaideep (Επιμελητής έκδοσης), Contractor, Noshir (Επιμελητής έκδοσης)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2014.
Σειρά:Springer Proceedings in Complexity,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03271nam a22005775i 4500
001 978-3-319-07142-8
003 DE-He213
005 20151204182707.0
007 cr nn 008mamaa
008 140724s2014 gw | s |||| 0|eng d
020 |a 9783319071428  |9 978-3-319-07142-8 
024 7 |a 10.1007/978-3-319-07142-8  |2 doi 
040 |d GrThAP 
050 4 |a QA76.76.A65 
072 7 |a J  |2 bicssc 
072 7 |a UB  |2 bicssc 
072 7 |a COM018000  |2 bisacsh 
072 7 |a SOC000000  |2 bisacsh 
082 0 4 |a 004  |2 23 
245 1 0 |a Predicting Real World Behaviors from Virtual World Data  |h [electronic resource] /  |c edited by Muhammad Aurangzeb Ahmad, Cuihua Shen, Jaideep Srivastava, Noshir Contractor. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2014. 
300 |a XIV, 118 p. 40 illus., 27 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Springer Proceedings in Complexity,  |x 2213-8684 
505 0 |a Preface -- On The Problem of Predicting Real World Characteristics from Virtual Worlds -- The Use of Social Science Methods to Predict Player Characteristics from Avatar Observations -- Analyzing Effects of Public Communication onto Player Behavior in Massively Multiplayer Online Games -- Identifying User Demographic Traits through Virtual-World Language Use -- Predicting MMO Player Gender from In-Game Attributes using Machine Learning Models -- Predicting Links in Human Contact Networks using Online Social Proximity -- Identifying a Typology of Players Based on Longitudinal Game Data. 
520 |a This book addresses prediction, mining and analysis of offline characteristics and behaviors from online data and vice versa. Each chapter will focus on a different aspect of virtual worlds to real world prediction e.g., demographics, personality, location, etc. There is a growing body of literature that focuses on the similarities and differences between how people behave in the offline world vs. how they behave in these virtual environments. Data mining has aided in discovering interesting insights with respect to how people behave in these virtual environments. 
650 0 |a Computer science. 
650 0 |a Application software. 
650 0 |a Mathematics. 
650 0 |a Social sciences. 
650 0 |a Sociophysics. 
650 0 |a Econophysics. 
650 1 4 |a Computer Science. 
650 2 4 |a Computer Appl. in Social and Behavioral Sciences. 
650 2 4 |a Socio- and Econophysics, Population and Evolutionary Models. 
650 2 4 |a Methodology of the Social Sciences. 
650 2 4 |a Mathematics in the Humanities and Social Sciences. 
700 1 |a Ahmad, Muhammad Aurangzeb.  |e editor. 
700 1 |a Shen, Cuihua.  |e editor. 
700 1 |a Srivastava, Jaideep.  |e editor. 
700 1 |a Contractor, Noshir.  |e editor. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319071411 
830 0 |a Springer Proceedings in Complexity,  |x 2213-8684 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-07142-8  |z Full Text via HEAL-Link 
912 |a ZDB-2-SCS 
950 |a Computer Science (Springer-11645)