Statistical Analysis of Next Generation Sequencing Data

Next Generation Sequencing (NGS) is the latest high throughput technology to revolutionize genomic research. NGS generates massive genomic datasets that play a key role in the big data phenomenon that surrounds us today. To extract signals from high-dimensional NGS data and make valid statistical in...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Datta, Somnath (Επιμελητής έκδοσης), Nettleton, Dan (Επιμελητής έκδοσης)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2014.
Σειρά:Frontiers in Probability and the Statistical Sciences
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
Πίνακας περιεχομένων:
  • Statistical Analyses of Next Generation Sequencing Data: An Overview
  • Using RNA-seq Data to Detect Differentially Expressed Genes
  • Differential Expression Analysis of Complex RNA-seq Experiments Using edgeR
  • Analysis of Next Generation Sequencing Data Using Integrated Nested Laplace Approximation (INLA)
  • Design of RNA Sequencing Experiments
  • Measurement, Summary, and Methodological Variation in RNA-sequencing
  • Functional PCA for differential expression testing with RNA-seq data
  • Mapping of Expression Quantitative Trait Loci using RNA-seq Data
  • The Role of Spike-In Standards in the Normalization of RNA-seq
  • Cluster Analysis of RNA-sequencing Data
  • Classification of RNA-seq Data
  • Isoform Expression Analysis Based on RNA-seq Data
  • RNA Isoform Discovery Through Goodness of Fit Diagnostics
  • MOSAiCS-HMM: A Model-based Approach for Detecting Regions of Histone Modifications from ChIP-seq Data
  • Hierarchical Bayesian Models for ChIP-Seq Data
  • Genotype Calling and Haplotype Phasing from Next Generation Sequencing Data.- Analysis of Metagenomic Data
  • Detecting Copy Number Changes and Structural Rearrangements using DNA Sequencing
  • Statistical Methods for the Analysis of Next Generation Sequence Data from Paired Tumor-Normal Samples
  • Statistical Considerations in the Analysis of Rare Variants.