Robust Recognition via Information Theoretic Learning

This Springer Brief represents a comprehensive review of information theoretic methods for robust recognition. A variety of information theoretic methods have been proffered in the past decade, in a large variety of computer vision applications; this work brings them together, attempts to impart the...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: He, Ran (Συγγραφέας), Hu, Baogang (Συγγραφέας), Yuan, Xiaotong (Συγγραφέας), Wang, Liang (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2014.
Σειρά:SpringerBriefs in Computer Science,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 02899nam a22005175i 4500
001 978-3-319-07416-0
003 DE-He213
005 20151204190124.0
007 cr nn 008mamaa
008 140828s2014 gw | s |||| 0|eng d
020 |a 9783319074160  |9 978-3-319-07416-0 
024 7 |a 10.1007/978-3-319-07416-0  |2 doi 
040 |d GrThAP 
050 4 |a T385 
050 4 |a TA1637-1638 
050 4 |a TK7882.P3 
072 7 |a UYQV  |2 bicssc 
072 7 |a COM016000  |2 bisacsh 
082 0 4 |a 006.6  |2 23 
100 1 |a He, Ran.  |e author. 
245 1 0 |a Robust Recognition via Information Theoretic Learning  |h [electronic resource] /  |c by Ran He, Baogang Hu, Xiaotong Yuan, Liang Wang. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2014. 
300 |a XI, 110 p. 29 illus., 25 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a SpringerBriefs in Computer Science,  |x 2191-5768 
505 0 |a Introduction -- M-estimators and Half-quadratic Minimization -- Information Measures -- Correntropy and Linear Representation -- ℓ1 Regularized Correntropy -- Correntropy with Nonnegative Constraint. 
520 |a This Springer Brief represents a comprehensive review of information theoretic methods for robust recognition. A variety of information theoretic methods have been proffered in the past decade, in a large variety of computer vision applications; this work brings them together, attempts to impart the theory, optimization and usage of information entropy. The authors resort to a new information theoretic concept, correntropy, as a robust measure and apply it to solve robust face recognition and object recognition problems. For computational efficiency, the brief introduces the additive and multiplicative forms of half-quadratic optimization to efficiently minimize entropy problems and a two-stage sparse presentation framework for large scale recognition problems. It also describes the strengths and deficiencies of different robust measures in solving robust recognition problems. 
650 0 |a Computer science. 
650 0 |a Computer graphics. 
650 0 |a Image processing. 
650 1 4 |a Computer Science. 
650 2 4 |a Computer Imaging, Vision, Pattern Recognition and Graphics. 
650 2 4 |a Image Processing and Computer Vision. 
700 1 |a Hu, Baogang.  |e author. 
700 1 |a Yuan, Xiaotong.  |e author. 
700 1 |a Wang, Liang.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319074153 
830 0 |a SpringerBriefs in Computer Science,  |x 2191-5768 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-07416-0  |z Full Text via HEAL-Link 
912 |a ZDB-2-SCS 
950 |a Computer Science (Springer-11645)