Stochastic Equations: Theory and Applications in Acoustics, Hydrodynamics, Magnetohydrodynamics, and Radiophysics, Volume 2 Coherent Phenomena in Stochastic Dynamic Systems /

In some cases, certain coherent structures can exist in stochastic dynamic systems almost in every particular realization of random parameters describing these systems. Dynamic localization in one-dimensional dynamic systems, vortexgenesis (vortex production) in hydrodynamic flows, and phenomenon of...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Klyatskin, Valery I. (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2015.
Σειρά:Understanding Complex Systems,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03425nam a22005175i 4500
001 978-3-319-07590-7
003 DE-He213
005 20151116133348.0
007 cr nn 008mamaa
008 140714s2015 gw | s |||| 0|eng d
020 |a 9783319075907  |9 978-3-319-07590-7 
024 7 |a 10.1007/978-3-319-07590-7  |2 doi 
040 |d GrThAP 
050 4 |a QA76.9.M35 
072 7 |a GPFC  |2 bicssc 
072 7 |a TEC000000  |2 bisacsh 
082 0 4 |a 620  |2 23 
100 1 |a Klyatskin, Valery I.  |e author. 
245 1 0 |a Stochastic Equations: Theory and Applications in Acoustics, Hydrodynamics, Magnetohydrodynamics, and Radiophysics, Volume 2  |h [electronic resource] :  |b Coherent Phenomena in Stochastic Dynamic Systems /  |c by Valery I. Klyatskin. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2015. 
300 |a XVIII, 491 p. 51 illus., 1 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Understanding Complex Systems,  |x 1860-0832 
505 0 |a Stochastic structure formations in random hydrodynamic flows -- Density field diffusion and clustering in random hydrodynamic flows -- Magnetic field diffusion and clustering in random magnetohydrodynamic flows -- Wave localization in randomly layered media -- Wave propagation in random media -- Appendices, Imbedding method in boundary-value wave problems. 
520 |a In some cases, certain coherent structures can exist in stochastic dynamic systems almost in every particular realization of random parameters describing these systems. Dynamic localization in one-dimensional dynamic systems, vortexgenesis (vortex production) in hydrodynamic flows, and phenomenon of clustering of various fields in random media (i.e., appearance of small regions with enhanced content of the field against the nearly vanishing background of this field in the remaining portion of space) are examples of such structure formation. The general methodology presented in Volume 1 is used in Volume 2 Coherent Phenomena in Stochastic Dynamic Systems to expound the theory of these phenomena in some specific fields of stochastic science, among which are hydrodynamics, magnetohydrodynamics, acoustics, optics, and radiophysics. The material of this volume includes particle and field clustering in the cases of scalar (density field) and vector (magnetic field) passive tracers in a random velocity field, dynamic localization of plane waves in layered random media, as well as monochromatic wave propagation and caustic structure formation in random media in terms of the scalar parabolic equation. 
650 0 |a Engineering. 
650 0 |a Dynamics. 
650 0 |a Ergodic theory. 
650 0 |a Statistical physics. 
650 0 |a Complexity, Computational. 
650 0 |a Fluid mechanics. 
650 1 4 |a Engineering. 
650 2 4 |a Complexity. 
650 2 4 |a Nonlinear Dynamics. 
650 2 4 |a Dynamical Systems and Ergodic Theory. 
650 2 4 |a Engineering Fluid Dynamics. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319075891 
830 0 |a Understanding Complex Systems,  |x 1860-0832 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-07590-7  |z Full Text via HEAL-Link 
912 |a ZDB-2-ENG 
950 |a Engineering (Springer-11647)