The Influence of Demographic Stochasticity on Population Dynamics A Mathematical Study of Noise-Induced Bistable States and Stochastic Patterns /

The dynamics of population systems cannot be understood within the framework of ordinary differential equations, which assume that the number of interacting agents is infinite. With recent advances in ecology, biochemistry and genetics it is becoming increasingly clear that real systems are in fact...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Biancalani, Tommaso (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2014.
Σειρά:Springer Theses, Recognizing Outstanding Ph.D. Research,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03093nam a22005415i 4500
001 978-3-319-07728-4
003 DE-He213
005 20151204174932.0
007 cr nn 008mamaa
008 140604s2014 gw | s |||| 0|eng d
020 |a 9783319077284  |9 978-3-319-07728-4 
024 7 |a 10.1007/978-3-319-07728-4  |2 doi 
040 |d GrThAP 
050 4 |a QC1-999 
072 7 |a JHBC  |2 bicssc 
072 7 |a PSAF  |2 bicssc 
072 7 |a SCI064000  |2 bisacsh 
082 0 4 |a 621  |2 23 
100 1 |a Biancalani, Tommaso.  |e author. 
245 1 4 |a The Influence of Demographic Stochasticity on Population Dynamics  |h [electronic resource] :  |b A Mathematical Study of Noise-Induced Bistable States and Stochastic Patterns /  |c by Tommaso Biancalani. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2014. 
300 |a XVII, 113 p. 37 illus., 16 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Springer Theses, Recognizing Outstanding Ph.D. Research,  |x 2190-5053 
505 0 |a Introduction -- Methods -- Noise-Induced Bistability -- Stochastic Waves on Regular Lattices -- Stochastic Waves on Complex Network -- Conclusions. 
520 |a The dynamics of population systems cannot be understood within the framework of ordinary differential equations, which assume that the number of interacting agents is infinite. With recent advances in ecology, biochemistry and genetics it is becoming increasingly clear that real systems are in fact subject to a great deal of noise. Relevant examples include social insects competing for resources, molecules undergoing chemical reactions in a cell and a pool of genomes subject to evolution. When the population size is small, novel macroscopic phenomena can arise, which can be analyzed using the theory of stochastic processes. This thesis is centered on two unsolved problems in population dynamics: the symmetry breaking observed in foraging populations, and the robustness of spatial patterns. We argue that these problems can be resolved with the help of two novel concepts: noise-induced bistable states and stochastic patterns. 
650 0 |a Physics. 
650 0 |a Community ecology, Biotic. 
650 0 |a Probabilities. 
650 0 |a Biophysics. 
650 0 |a Biological physics. 
650 0 |a Sociophysics. 
650 0 |a Econophysics. 
650 1 4 |a Physics. 
650 2 4 |a Socio- and Econophysics, Population and Evolutionary Models. 
650 2 4 |a Probability Theory and Stochastic Processes. 
650 2 4 |a Community & Population Ecology. 
650 2 4 |a Biophysics and Biological Physics. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319077277 
830 0 |a Springer Theses, Recognizing Outstanding Ph.D. Research,  |x 2190-5053 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-07728-4  |z Full Text via HEAL-Link 
912 |a ZDB-2-PHA 
950 |a Physics and Astronomy (Springer-11651)