Representation Theory A Homological Algebra Point of View /

  Introducing the representation theory of groups and finite dimensional algebras, this book first studies basic non-commutative ring theory, covering the necessary background of elementary homological algebra and representations of groups to block theory. It further discusses vertices, defect group...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Zimmermann, Alexander (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2014.
Σειρά:Algebra and Applications, 19
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03268nam a22005295i 4500
001 978-3-319-07968-4
003 DE-He213
005 20151030101707.0
007 cr nn 008mamaa
008 140815s2014 gw | s |||| 0|eng d
020 |a 9783319079684  |9 978-3-319-07968-4 
024 7 |a 10.1007/978-3-319-07968-4  |2 doi 
040 |d GrThAP 
050 4 |a QA150-272 
072 7 |a PBF  |2 bicssc 
072 7 |a MAT002000  |2 bisacsh 
082 0 4 |a 512  |2 23 
100 1 |a Zimmermann, Alexander.  |e author. 
245 1 0 |a Representation Theory  |h [electronic resource] :  |b A Homological Algebra Point of View /  |c by Alexander Zimmermann. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2014. 
300 |a XX, 707 p. 59 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Algebra and Applications,  |x 1572-5553 ;  |v 19 
505 0 |a Rings, Algebras and Modules -- Modular Representations of Finite Groups -- Abelian and Triangulated Categories -- Morita theory -- Stable Module Categories -- Derived Equivalences. 
520 |a   Introducing the representation theory of groups and finite dimensional algebras, this book first studies basic non-commutative ring theory, covering the necessary background of elementary homological algebra and representations of groups to block theory. It further discusses vertices, defect groups, Green and Brauer correspondences and Clifford theory. Whenever possible the statements are presented in a general setting for more general algebras, such as symmetric finite dimensional algebras over a field. Then, abelian and derived categories are introduced in detail and are used to explain stable module categories, as well as derived categories and their main invariants and links between them. Group theoretical applications of these theories are given – such as the structure of blocks of cyclic defect groups – whenever appropriate. Overall, many methods from the representation theory of algebras are introduced. Representation Theory assumes only the most basic knowledge of linear algebra, groups, rings and fields, and guides the reader in the use of categorical equivalences in the representation theory of groups and algebras. As the book is based on lectures, it will be accessible to any graduate student in algebra and can be used for self-study as well as for classroom use. 
650 0 |a Mathematics. 
650 0 |a Algebra. 
650 0 |a Associative rings. 
650 0 |a Rings (Algebra). 
650 0 |a Category theory (Mathematics). 
650 0 |a Homological algebra. 
650 0 |a Group theory. 
650 1 4 |a Mathematics. 
650 2 4 |a Algebra. 
650 2 4 |a Associative Rings and Algebras. 
650 2 4 |a Category Theory, Homological Algebra. 
650 2 4 |a Group Theory and Generalizations. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319079677 
830 0 |a Algebra and Applications,  |x 1572-5553 ;  |v 19 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-07968-4  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)