Tools for High Performance Computing 2013 Proceedings of the 7th International Workshop on Parallel Tools for High Performance Computing, September 2013, ZIH, Dresden, Germany /
Current advances in High Performance Computing (HPC) increasingly impact efficient software development workflows. Programmers for HPC applications need to consider trends such as increased core counts, multiple levels of parallelism, reduced memory per core, and I/O system challenges in order to de...
Συγγραφή απο Οργανισμό/Αρχή: | |
---|---|
Άλλοι συγγραφείς: | , , , |
Μορφή: | Ηλεκτρονική πηγή Ηλ. βιβλίο |
Γλώσσα: | English |
Έκδοση: |
Cham :
Springer International Publishing : Imprint: Springer,
2014.
|
Θέματα: | |
Διαθέσιμο Online: | Full Text via HEAL-Link |
Πίνακας περιεχομένων:
- Juan Gonzalez, Judit Gimenez, and Jesus Labarta: Performance Analytics: Understanding Parallel Applications Using Cluster and Sequence Analysis
- Mahesh Lagadapati, Frank Mueller, and Christian Engelmann: Tools for Simulation and Benchmark Generation at Exascale
- Dirk Schmidl, Christian Terboven, Dieter an Mey, and Matthias S. Müller: Suitability of Performance Tools for OpenMP Task-parallel Programs
- Yury Oleynik, Robert Mijaković, Isaías A. Comprés Ure˜na, Michael Firbach, and Michael Gerndt: Recent Advances in Periscope for Performance Analysis and Tuning
- Xingfu Wu, Valerie Taylor, Charles Lively, Hung-Ching Chang, Bo Li, Kirk Cameron, Dan Terpstra, and Shirley Moore: MuMMI: Multiple Metrics Modeling Infrastructure
- Thomas M. Baumann and José Gracia: Cudagrind: Memory-Usage Checking for CUDA
- Trevor E. Carlson, Wim Heirman, Kenzo Van Craeynest, Lieven Eeckhout: Node Performance and Energy Analysis with the Sniper Multi-Core Simulator
- Alvaro Aguilera, Holger Mickler, Julian Kunkel, Michaela Zimmer, Marc Wiedemann, Ralph Müller-Pfefferkorn: A Comparison of Trace Compression Methods for Massively Parallel Applications in Context of the SIOX Project
- Zakaria Bendifallah, William Jalby, José Noudohouenou, Emmanuel Oseret, and Vincent Palomares: PAMDA: Performance Assessment using MAQAO Toolset and Differential Analysis.