Algebraic K-theory of Crystallographic Groups The Three-Dimensional Splitting Case /

The Farrell-Jones isomorphism conjecture in algebraic K-theory offers a description of the algebraic K-theory of a group using a generalized homology theory. In cases where the conjecture is known to be a theorem, it gives a powerful method for computing the lower algebraic K-theory of a group. This...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Farley, Daniel Scott (Συγγραφέας), Ortiz, Ivonne Johanna (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2014.
Σειρά:Lecture Notes in Mathematics, 2113
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 02770nam a22005055i 4500
001 978-3-319-08153-3
003 DE-He213
005 20151103132236.0
007 cr nn 008mamaa
008 140827s2014 gw | s |||| 0|eng d
020 |a 9783319081533  |9 978-3-319-08153-3 
024 7 |a 10.1007/978-3-319-08153-3  |2 doi 
040 |d GrThAP 
050 4 |a QA612.33 
072 7 |a PBPD  |2 bicssc 
072 7 |a MAT002010  |2 bisacsh 
082 0 4 |a 512.66  |2 23 
100 1 |a Farley, Daniel Scott.  |e author. 
245 1 0 |a Algebraic K-theory of Crystallographic Groups  |h [electronic resource] :  |b The Three-Dimensional Splitting Case /  |c by Daniel Scott Farley, Ivonne Johanna Ortiz. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2014. 
300 |a X, 148 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 2113 
520 |a The Farrell-Jones isomorphism conjecture in algebraic K-theory offers a description of the algebraic K-theory of a group using a generalized homology theory. In cases where the conjecture is known to be a theorem, it gives a powerful method for computing the lower algebraic K-theory of a group. This book contains a computation of the lower algebraic K-theory of the split three-dimensional crystallographic groups, a geometrically important class of three-dimensional crystallographic group, representing a third of the total number. The book leads the reader through all aspects of the calculation. The first chapters describe the split crystallographic groups and their classifying spaces. Later chapters assemble the techniques that are needed to apply the isomorphism theorem. The result is a useful starting point for researchers who are interested in the computational side of the Farrell-Jones isomorphism conjecture, and a contribution to the growing literature in the field. 
650 0 |a Mathematics. 
650 0 |a Group theory. 
650 0 |a K-theory. 
650 0 |a Manifolds (Mathematics). 
650 0 |a Complex manifolds. 
650 1 4 |a Mathematics. 
650 2 4 |a K-Theory. 
650 2 4 |a Group Theory and Generalizations. 
650 2 4 |a Manifolds and Cell Complexes (incl. Diff.Topology). 
700 1 |a Ortiz, Ivonne Johanna.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319081526 
830 0 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 2113 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-08153-3  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
912 |a ZDB-2-LNM 
950 |a Mathematics and Statistics (Springer-11649)