Extraction of Quantifiable Information from Complex Systems

In April 2007, the  Deutsche Forschungsgemeinschaft (DFG) approved the  Priority Program 1324 “Mathematical Methods for Extracting Quantifiable Information from Complex Systems.” This volume presents a comprehensive overview of the most important results obtained over the course of the program.   Ma...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Dahlke, Stephan (Επιμελητής έκδοσης), Dahmen, Wolfgang (Επιμελητής έκδοσης), Griebel, Michael (Επιμελητής έκδοσης), Hackbusch, Wolfgang (Επιμελητής έκδοσης), Ritter, Klaus (Επιμελητής έκδοσης), Schneider, Reinhold (Επιμελητής έκδοσης), Schwab, Christoph (Επιμελητής έκδοσης), Yserentant, Harry (Επιμελητής έκδοσης)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2014.
Σειρά:Lecture Notes in Computational Science and Engineering, 102
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 06958nam a22006495i 4500
001 978-3-319-08159-5
003 DE-He213
005 20151031081139.0
007 cr nn 008mamaa
008 141113s2014 gw | s |||| 0|eng d
020 |a 9783319081595  |9 978-3-319-08159-5 
024 7 |a 10.1007/978-3-319-08159-5  |2 doi 
040 |d GrThAP 
050 4 |a QA370-380 
072 7 |a PBKJ  |2 bicssc 
072 7 |a MAT007000  |2 bisacsh 
082 0 4 |a 515.353  |2 23 
245 1 0 |a Extraction of Quantifiable Information from Complex Systems  |h [electronic resource] /  |c edited by Stephan Dahlke, Wolfgang Dahmen, Michael Griebel, Wolfgang Hackbusch, Klaus Ritter, Reinhold Schneider, Christoph Schwab, Harry Yserentant. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2014. 
300 |a XIX, 432 p. 49 illus., 22 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Computational Science and Engineering,  |x 1439-7358 ;  |v 102 
505 0 |a D. Belomestny, C. Bender, F. Dickmann, and N. Schweizer: Solving Stochastic Dynamic Programs by Convex Optimization and Simulation -- W. Dahmen, C. Huang, G. Kutyniok, W -- Q Lim, C. Schwab, and G. Welper: Efficient Resolution of Anisotropic Structures -- R. Ressel, P. Dülk, S. Dahlke, K. S. Kazimierski, and P. Maass: Regularity of the Parameter-to-state Map of a Parabolic Partial Differential Equation -- N. Chegini, S. Dahlke, U. Friedrich, and R. Stevenson: Piecewise Tensor Product Wavelet Bases by Extensions and Approximation Rates -- P. A. Cioica, S. Dahlke, N. Döhring, S. Kinzel, F. Lindner, T. Raasch, K. Ritter, and R. Schilling: Adaptive Wavelet Methods for SPDEs -- M. Altmayer, S. Dereich, S. Li, T. Müller-Gronbach, A. Neuenkirch, K. Ritter and L. Yaroslavtseva: Constructive Quantization and Multilevel Algorithms for Quadrature of Stochastic Differential Equations -- O. G. Ernst, B. Sprungk, and H -- J. Starkloff: Bayesian Inverse Problems and Kalman Filters -- J. Diehl, P. Friz, H. Mai, H. Oberhauser, S. Riedel, and W. Stannat: Robustness in Stochastic Filtering and Maximum Likelihood Estimation for SDEs -- J. Garcke and I. Klompmaker: Adaptive Sparse Grids in Reinforcement Learning -- J. Ballani, L. Grasedyck, and M. Kluge: A Review on Adaptive Low-Rank Approximation Techniques in the Hierarchical Tensor Format -- M. Griebel, J. Hamaekers, and F. Heber: A Bond Order Dissection ANOVA Approach for Efficient Electronic Structure Calculations -- W. Hackbusch and R. Schneider: Tensor Spaces and Hierarchical Tensor Representations -- L. Jost, S. Setzer, and M. Hein: Nonlinear Eigenproblems in Data Analysis - Balanced Graph Cuts and the Ratio DCA-Prox -- M. Guillemard, D. Heinen, A. Iske, S. Krause-Solberg, and G. Plonka: Adaptive Approximation Algorithms for Sparse Data Representation -- T. Jahnke and V. Sunkara: Error Bound for Hybrid Models of Two-scaled Stochastic Reaction Systems -- R. Kiesel, A. Rupp, and K. Urban: Valuation of Structured Financial Products by Adaptive Multi wavelet Methods in High Dimensions -- L Kämmerer, S. Kunis, I. Melzer, D. Potts, and T. Volkmer: Computational Methods for the Fourier Analysis of Sparse High-Dimensional Functions -- E. Herrholz, D. Lorenz, G. Teschke, and D. Trede: Sparsity and Compressed Sensing in Inverse Problems -- C. Lubich: Low-Rank Dynamics -- E. Novak and D. Rudolf: Computation of Expectations by Markov Chain Monte Carlo Methods -- H. Yserentant: Regularity, Complexity, and Approximability of Electronic Wave functions -- Index. 
520 |a In April 2007, the  Deutsche Forschungsgemeinschaft (DFG) approved the  Priority Program 1324 “Mathematical Methods for Extracting Quantifiable Information from Complex Systems.” This volume presents a comprehensive overview of the most important results obtained over the course of the program.   Mathematical models of complex systems provide the foundation for further technological developments in science, engineering and computational finance.  Motivated by the trend toward steadily increasing computer power, ever more realistic models have been developed in recent years. These models have also become increasingly complex, and their numerical treatment poses serious challenges.   Recent developments in mathematics suggest that, in the long run, much more powerful numerical solution strategies could be derived if the interconnections between the different fields of research were systematically exploited at a conceptual level. Accordingly, a deeper understanding of the mathematical foundations as well as the development of new and efficient numerical algorithms were among the main goals of this Priority Program.   The treatment of high-dimensional systems is clearly one of the most challenging tasks in applied mathematics today. Since the problem of high-dimensionality appears in many fields of application, the above-mentioned synergy and cross-fertilization effects were expected to make a great impact. To be truly successful, the following issues had to be kept in mind: theoretical research and practical applications had to be developed hand in hand; moreover, it has proven necessary to combine different fields of mathematics, such as numerical analysis and computational stochastics. To keep the whole program sufficiently focused, we concentrated on specific but related fields of application that share common characteristics and, as such, they allowed us to use closely related approaches.  . 
650 0 |a Mathematics. 
650 0 |a Approximation theory. 
650 0 |a Partial differential equations. 
650 0 |a Applied mathematics. 
650 0 |a Engineering mathematics. 
650 0 |a Computer mathematics. 
650 0 |a Numerical analysis. 
650 0 |a Probabilities. 
650 1 4 |a Mathematics. 
650 2 4 |a Partial Differential Equations. 
650 2 4 |a Applications of Mathematics. 
650 2 4 |a Computational Mathematics and Numerical Analysis. 
650 2 4 |a Numerical Analysis. 
650 2 4 |a Probability Theory and Stochastic Processes. 
650 2 4 |a Approximations and Expansions. 
700 1 |a Dahlke, Stephan.  |e editor. 
700 1 |a Dahmen, Wolfgang.  |e editor. 
700 1 |a Griebel, Michael.  |e editor. 
700 1 |a Hackbusch, Wolfgang.  |e editor. 
700 1 |a Ritter, Klaus.  |e editor. 
700 1 |a Schneider, Reinhold.  |e editor. 
700 1 |a Schwab, Christoph.  |e editor. 
700 1 |a Yserentant, Harry.  |e editor. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319081588 
830 0 |a Lecture Notes in Computational Science and Engineering,  |x 1439-7358 ;  |v 102 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-08159-5  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)