Symbol Correspondences for Spin Systems

In mathematical physics, the correspondence between quantum and classical mechanics is a central topic, which this book explores in more detail in the particular context of spin systems, that is, SU(2)-symmetric mechanical systems. A detailed presentation of quantum spin-j systems, with emphasis on...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Rios, Pedro de M. (Συγγραφέας), Straume, Eldar (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Birkhäuser, 2014.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03234nam a22005175i 4500
001 978-3-319-08198-4
003 DE-He213
005 20151204173442.0
007 cr nn 008mamaa
008 141010s2014 gw | s |||| 0|eng d
020 |a 9783319081984  |9 978-3-319-08198-4 
024 7 |a 10.1007/978-3-319-08198-4  |2 doi 
040 |d GrThAP 
050 4 |a QA252-252.5 
072 7 |a PBF  |2 bicssc 
072 7 |a MAT002010  |2 bisacsh 
082 0 4 |a 512.48  |2 23 
100 1 |a Rios, Pedro de M.  |e author. 
245 1 0 |a Symbol Correspondences for Spin Systems  |h [electronic resource] /  |c by Pedro de M. Rios, Eldar Straume. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Birkhäuser,  |c 2014. 
300 |a IX, 200 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Preface -- 1 Introduction -- 2 Preliminaries -- 3 Quantum Spin Systems and Their Operator Algebras -- 4 The Poisson Algebra of the Classical Spin System -- 5 Intermission -- 6 Symbol Correspondences for a Spin-j System -- 7 Multiplications of Symbols on the 2-Sphere -- 8 Beginning Asymptotic Analysis of Twisted Products -- 9 Conclusion -- Appendix -- Bibliography -- Index. 
520 |a In mathematical physics, the correspondence between quantum and classical mechanics is a central topic, which this book explores in more detail in the particular context of spin systems, that is, SU(2)-symmetric mechanical systems. A detailed presentation of quantum spin-j systems, with emphasis on the SO(3)-invariant decomposition of their operator algebras, is first followed by an introduction to the Poisson algebra of the classical spin system, and then by a similarly detailed examination of its SO(3)-invariant decomposition. The book next proceeds with a detailed and systematic study of general quantum-classical symbol correspondences for spin-j systems and their induced twisted products of functions on the 2-sphere. This original systematic presentation culminates with the study of twisted products in the asymptotic limit of high spin numbers. In the context of spin systems it shows how classical mechanics may or may not emerge as an asymptotic limit of quantum mechanics. The book will be a valuable guide for researchers in this field, and its self-contained approach also makes it a helpful resource for graduate students in mathematics and physics. 
650 0 |a Mathematics. 
650 0 |a Nonassociative rings. 
650 0 |a Rings (Algebra). 
650 0 |a Topological groups. 
650 0 |a Lie groups. 
650 0 |a Differential geometry. 
650 0 |a Quantum physics. 
650 1 4 |a Mathematics. 
650 2 4 |a Non-associative Rings and Algebras. 
650 2 4 |a Quantum Physics. 
650 2 4 |a Topological Groups, Lie Groups. 
650 2 4 |a Differential Geometry. 
700 1 |a Straume, Eldar.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319081977 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-08198-4  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)