Classical and Stochastic Laplacian Growth

This monograph covers a multitude of concepts, results, and research topics originating from a classical moving-boundary problem in two dimensions (idealized Hele-Shaw flows, or classical Laplacian growth), which has strong connections to many exciting modern developments in mathematics and theoreti...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Gustafsson, Björn (Συγγραφέας), Teodorescu, Razvan (Συγγραφέας), Vasil’ev, Alexander (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Birkhäuser, 2014.
Σειρά:Advances in Mathematical Fluid Mechanics,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03686nam a22005175i 4500
001 978-3-319-08287-5
003 DE-He213
005 20151031101110.0
007 cr nn 008mamaa
008 141114s2014 gw | s |||| 0|eng d
020 |a 9783319082875  |9 978-3-319-08287-5 
024 7 |a 10.1007/978-3-319-08287-5  |2 doi 
040 |d GrThAP 
050 4 |a QA401-425 
050 4 |a QC19.2-20.85 
072 7 |a PHU  |2 bicssc 
072 7 |a SCI040000  |2 bisacsh 
082 0 4 |a 530.15  |2 23 
100 1 |a Gustafsson, Björn.  |e author. 
245 1 0 |a Classical and Stochastic Laplacian Growth  |h [electronic resource] /  |c by Björn Gustafsson, Razvan Teodorescu, Alexander Vasil’ev. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Birkhäuser,  |c 2014. 
300 |a XIV, 317 p. 52 illus., 13 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Advances in Mathematical Fluid Mechanics,  |x 2297-0320 
505 0 |a 1 Introduction and Background -- 2 Rational and Other Explicit Strong Solutions -- 3 Weak Solutions and Related Topics -- 4 Geometric Properties -- 5 Capacities and Isoperimetric Inequalities -- 6 Laplacian Growth and Random Matrix Theory -- 7 Integrability and Moments -- 8 Shape Evolution and Integrability -- 9 Stochastic Löwner and Löwner-Kufarev Evolution -- References -- List of Symbols -- Index. 
520 |a This monograph covers a multitude of concepts, results, and research topics originating from a classical moving-boundary problem in two dimensions (idealized Hele-Shaw flows, or classical Laplacian growth), which has strong connections to many exciting modern developments in mathematics and theoretical physics. Of particular interest are the relations between Laplacian growth and the infinite-size limit of ensembles of random matrices with complex eigenvalues; integrable hierarchies of differential equations and their spectral curves; classical and stochastic Löwner evolution and critical phenomena in two-dimensional statistical models; weak solutions of hyperbolic partial differential equations of singular-perturbation type; and resolution of singularities for compact Riemann surfaces with anti-holomorphic involution. The book also provides an abundance of exact classical solutions, many explicit examples of dynamics by conformal mapping as well as a solid foundation of potential theory. An extensive bibliography covering over twelve decades of results and an introduction rich in historical and biographical details complement the eight main chapters of this monograph. Given its systematic and consistent notation and background results, this book provides a self-contained resource. It is accessible to a wide readership, from beginner graduate students to researchers from various fields in natural sciences and mathematics. 
650 0 |a Mathematics. 
650 0 |a Functions of complex variables. 
650 0 |a Numerical analysis. 
650 0 |a Mathematical physics. 
650 1 4 |a Mathematics. 
650 2 4 |a Mathematical Physics. 
650 2 4 |a Numerical Analysis. 
650 2 4 |a Functions of a Complex Variable. 
700 1 |a Teodorescu, Razvan.  |e author. 
700 1 |a Vasil’ev, Alexander.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319082868 
830 0 |a Advances in Mathematical Fluid Mechanics,  |x 2297-0320 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-08287-5  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)