Forward Error Correction Based On Algebraic-Geometric Theory

This book covers the design, construction, and implementation of algebraic-geometric codes from Hermitian curves. Matlab simulations of algebraic-geometric codes and Reed-Solomon codes compare their bit error rate using different modulation schemes over additive white Gaussian noise channel model. S...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: A. Alzubi, Jafar (Συγγραφέας), A. Alzubi, Omar (Συγγραφέας), M. Chen, Thomas (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2014.
Σειρά:SpringerBriefs in Electrical and Computer Engineering,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03016nam a22005055i 4500
001 978-3-319-08293-6
003 DE-He213
005 20151029231642.0
007 cr nn 008mamaa
008 140612s2014 gw | s |||| 0|eng d
020 |a 9783319082936  |9 978-3-319-08293-6 
024 7 |a 10.1007/978-3-319-08293-6  |2 doi 
040 |d GrThAP 
050 4 |a TK1-9971 
072 7 |a TJK  |2 bicssc 
072 7 |a TEC041000  |2 bisacsh 
082 0 4 |a 621.382  |2 23 
100 1 |a A. Alzubi, Jafar.  |e author. 
245 1 0 |a Forward Error Correction Based On Algebraic-Geometric Theory  |h [electronic resource] /  |c by Jafar A. Alzubi, Omar A. Alzubi, Thomas M. Chen. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2014. 
300 |a XII, 70 p. 33 illus., 20 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a SpringerBriefs in Electrical and Computer Engineering,  |x 2191-8112 
505 0 |a 1 Introduction -- 2 Theoretical Background -- 3 Literature Review -- 4 Algebraic-Geometric Non-Binary Block Turbo Codes -- 5 Irregular Decoding of Algebraic-Geometric Block Turbo Codes -- 6 Conclusions. 
520 |a This book covers the design, construction, and implementation of algebraic-geometric codes from Hermitian curves. Matlab simulations of algebraic-geometric codes and Reed-Solomon codes compare their bit error rate using different modulation schemes over additive white Gaussian noise channel model. Simulation results of Algebraic-geometric codes bit error rate performance using quadrature amplitude modulation (16QAM and 64QAM) are presented for the first time and shown to outperform Reed-Solomon codes at various code rates and channel models. The book proposes algebraic-geometric block turbo codes. It also presents simulation results that show an improved bit error rate performance at the cost of high system complexity due to using algebraic-geometric codes and Chase-Pyndiah’s algorithm simultaneously. The book proposes algebraic-geometric irregular block turbo codes (AG-IBTC) to reduce system complexity. Simulation results for AG-IBTCs are presented for the first time. 
650 0 |a Engineering. 
650 0 |a Coding theory. 
650 0 |a Information theory. 
650 0 |a Electrical engineering. 
650 1 4 |a Engineering. 
650 2 4 |a Communications Engineering, Networks. 
650 2 4 |a Coding and Information Theory. 
650 2 4 |a Information and Communication, Circuits. 
700 1 |a A. Alzubi, Omar.  |e author. 
700 1 |a M. Chen, Thomas.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319082929 
830 0 |a SpringerBriefs in Electrical and Computer Engineering,  |x 2191-8112 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-08293-6  |z Full Text via HEAL-Link 
912 |a ZDB-2-ENG 
950 |a Engineering (Springer-11647)