Non-Linear Optical Response in Atoms, Molecules and Clusters An Explicit Time Dependent Density Functional Approach /

The aim of this brief is to present, in sufficient detail, a non-perturbative technique for calculating optical hyperpolarizabilities. The ability to efficiently compute hyperpolarizabilities, for a variety of different molecular systems, makes this brief invaluable for those engaged in the computat...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Goncharov, Vladimir (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2014.
Σειρά:SpringerBriefs in Molecular Science,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 02737nam a22004695i 4500
001 978-3-319-08320-9
003 DE-He213
005 20151204164159.0
007 cr nn 008mamaa
008 140905s2014 gw | s |||| 0|eng d
020 |a 9783319083209  |9 978-3-319-08320-9 
024 7 |a 10.1007/978-3-319-08320-9  |2 doi 
040 |d GrThAP 
050 4 |a QD450-801 
072 7 |a PNRP  |2 bicssc 
072 7 |a SCI013050  |2 bisacsh 
082 0 4 |a 541.2  |2 23 
100 1 |a Goncharov, Vladimir.  |e author. 
245 1 0 |a Non-Linear Optical Response in Atoms, Molecules and Clusters  |h [electronic resource] :  |b An Explicit Time Dependent Density Functional Approach /  |c by Vladimir Goncharov. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2014. 
300 |a XI, 70 p. 11 illus., 8 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a SpringerBriefs in Molecular Science,  |x 2191-5407 
505 0 |a Introduction -- Response functions -- Density Functional Perturbation Theory -- Real Time method -- Response Functions from Real Time TDDFT.- Nonlinear Response in Atoms, Molecules and Clusters -- Extension to Condensed Matter and Outlook. 
520 |a The aim of this brief is to present, in sufficient detail, a non-perturbative technique for calculating optical hyperpolarizabilities. The ability to efficiently compute hyperpolarizabilities, for a variety of different molecular systems, makes this brief invaluable for those engaged in the computational design of new electro-optical materials. The resulting computation is very predictable and suitable for automation, in contrast to perturbative methods that typically rely on iterative methods. The methodology which is wholly applicable to atoms, molecules, clusters (and with some modifications) to condensed matter, is described and illustrated at a level that is accessible to theoreticians and supplemented with details that should be of interest to practitioners. 
650 0 |a Chemistry. 
650 0 |a Chemistry, Physical and theoretical. 
650 0 |a Optical materials. 
650 0 |a Electronic materials. 
650 1 4 |a Chemistry. 
650 2 4 |a Theoretical and Computational Chemistry. 
650 2 4 |a Optical and Electronic Materials. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319083193 
830 0 |a SpringerBriefs in Molecular Science,  |x 2191-5407 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-08320-9  |z Full Text via HEAL-Link 
912 |a ZDB-2-CMS 
950 |a Chemistry and Materials Science (Springer-11644)