Computer Vision and Machine Learning with RGB-D Sensors

The combination of high-resolution visual and depth sensing, supported by machine learning, opens up new opportunities to solve real-world problems in computer vision. This authoritative text/reference presents an interdisciplinary selection of important, cutting-edge research on RGB-D based compute...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Shao, Ling (Επιμελητής έκδοσης), Han, Jungong (Επιμελητής έκδοσης), Kohli, Pushmeet (Επιμελητής έκδοσης), Zhang, Zhengyou (Επιμελητής έκδοσης)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2014.
Σειρά:Advances in Computer Vision and Pattern Recognition,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 05020nam a22005655i 4500
001 978-3-319-08651-4
003 DE-He213
005 20151103130627.0
007 cr nn 008mamaa
008 140714s2014 gw | s |||| 0|eng d
020 |a 9783319086514  |9 978-3-319-08651-4 
024 7 |a 10.1007/978-3-319-08651-4  |2 doi 
040 |d GrThAP 
050 4 |a TA1637-1638 
050 4 |a TA1634 
072 7 |a UYT  |2 bicssc 
072 7 |a UYQV  |2 bicssc 
072 7 |a COM012000  |2 bisacsh 
072 7 |a COM016000  |2 bisacsh 
082 0 4 |a 006.6  |2 23 
082 0 4 |a 006.37  |2 23 
245 1 0 |a Computer Vision and Machine Learning with RGB-D Sensors  |h [electronic resource] /  |c edited by Ling Shao, Jungong Han, Pushmeet Kohli, Zhengyou Zhang. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2014. 
300 |a X, 316 p. 163 illus., 148 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Advances in Computer Vision and Pattern Recognition,  |x 2191-6586 
505 0 |a Part I: Surveys -- 3D Depth Cameras in Vision: Benefits and Limitations of the Hardware -- A State-of-the-Art Report on Multiple RGB-D Sensor Research and on Publicly Available RGB-D Datasets -- Part II: Reconstruction, Mapping and Synthesis -- Calibration Between Depth and Color Sensors for Commodity Depth Cameras -- Depth Map Denoising via CDT-Based Joint Bilateral Filter -- Human Performance Capture Using Multiple Handheld Kinects -- Human Centered 3D Home Applications via Low-Cost RGBD Cameras -- Matching of 3D Objects Based on 3D Curves -- Using Sparse Optical Flow for Two-Phase Gas Flow Capturing with Multiple Kinects -- Part III: Detection, Segmentation and Tracking -- RGB-D Sensor-Based Computer Vision Assistive Technology for Visually Impaired Persons -- RGB-D Human Identification and Tracking in a Smart Environment -- Part IV: Learning-Based Recognition -- Feature Descriptors for Depth-Based Hand Gesture Recognition -- Hand Parsing and Gesture Recognition with a Commodity Depth Camera -- Learning Fast Hand Pose Recognition -- Real time Hand-Gesture Recognition Using RGB-D Sensor. 
520 |a The combination of high-resolution visual and depth sensing, supported by machine learning, opens up new opportunities to solve real-world problems in computer vision. This authoritative text/reference presents an interdisciplinary selection of important, cutting-edge research on RGB-D based computer vision. Divided into four sections, the book opens with a detailed survey of the field, followed by a focused examination of RGB-D based 3D reconstruction, mapping and synthesis. The work continues with a section devoted to novel techniques that employ depth data for object detection, segmentation and tracking, and concludes with examples of accurate human action interpretation aided by depth sensors. Topics and features: Discusses the calibration of color and depth cameras, the reduction of noise on depth maps, and methods for capturing human performance in 3D Reviews a selection of applications which use RGB-D information to reconstruct human figures, evaluate energy consumption, and obtain accurate action classification Presents an innovative approach for 3D object retrieval, and for the reconstruction of gas flow from multiple Kinect cameras Describes an RGB-D computer vision system designed to assist the visually impaired, and another for smart-environment sensing to assist elderly and disabled people Examines the effective features that characterize static hand poses, and introduces a unified framework to enforce both temporal and spatial constraints for hand parsing Proposes a new classifier architecture for real-time hand pose recognition, and a novel hand segmentation and gesture recognition system Researchers and practitioners working in computer vision, HCI and machine learning will find this to be a must-read text. The book also serves as a useful reference for graduate students studying computer vision, pattern recognition or multimedia. 
650 0 |a Computer science. 
650 0 |a User interfaces (Computer systems). 
650 0 |a Artificial intelligence. 
650 0 |a Image processing. 
650 1 4 |a Computer Science. 
650 2 4 |a Image Processing and Computer Vision. 
650 2 4 |a Artificial Intelligence (incl. Robotics). 
650 2 4 |a User Interfaces and Human Computer Interaction. 
700 1 |a Shao, Ling.  |e editor. 
700 1 |a Han, Jungong.  |e editor. 
700 1 |a Kohli, Pushmeet.  |e editor. 
700 1 |a Zhang, Zhengyou.  |e editor. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319086507 
830 0 |a Advances in Computer Vision and Pattern Recognition,  |x 2191-6586 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-08651-4  |z Full Text via HEAL-Link 
912 |a ZDB-2-SCS 
950 |a Computer Science (Springer-11645)