Hypercomplex Analysis: New Perspectives and Applications

Hypercomplex analysis is the extension of complex analysis to higher dimensions where the concept of a holomorphic function is substituted by the concept of a monogenic function. In recent decades this theory has come to the forefront of higher dimensional analysis. There are several approaches to t...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Bernstein, Swanhild (Επιμελητής έκδοσης), Kähler, Uwe (Επιμελητής έκδοσης), Sabadini, Irene (Επιμελητής έκδοσης), Sommen, Frank (Επιμελητής έκδοσης)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Birkhäuser, 2014.
Σειρά:Trends in Mathematics,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 02732nam a22005295i 4500
001 978-3-319-08771-9
003 DE-He213
005 20151030101858.0
007 cr nn 008mamaa
008 141010s2014 gw | s |||| 0|eng d
020 |a 9783319087719  |9 978-3-319-08771-9 
024 7 |a 10.1007/978-3-319-08771-9  |2 doi 
040 |d GrThAP 
050 4 |a QA331-355 
072 7 |a PBKD  |2 bicssc 
072 7 |a MAT034000  |2 bisacsh 
082 0 4 |a 515.9  |2 23 
245 1 0 |a Hypercomplex Analysis: New Perspectives and Applications  |h [electronic resource] /  |c edited by Swanhild Bernstein, Uwe Kähler, Irene Sabadini, Frank Sommen. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Birkhäuser,  |c 2014. 
300 |a VII, 227 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Trends in Mathematics,  |x 2297-0215 
520 |a Hypercomplex analysis is the extension of complex analysis to higher dimensions where the concept of a holomorphic function is substituted by the concept of a monogenic function. In recent decades this theory has come to the forefront of higher dimensional analysis. There are several approaches to this: quaternionic analysis which merely uses quaternions, Clifford analysis which relies on Clifford algebras, and generalizations of complex variables to higher dimensions such as split-complex variables. This book includes a selection of papers presented at the session on quaternionic and hypercomplex analysis at the ISAAC conference 2013 in Krakow, Poland. The topics covered represent new perspectives and current trends in hypercomplex analysis and applications to mathematical physics, image analysis and processing, and mechanics. 
650 0 |a Mathematics. 
650 0 |a Topological groups. 
650 0 |a Lie groups. 
650 0 |a Functions of complex variables. 
650 0 |a Computer mathematics. 
650 1 4 |a Mathematics. 
650 2 4 |a Functions of a Complex Variable. 
650 2 4 |a Topological Groups, Lie Groups. 
650 2 4 |a Several Complex Variables and Analytic Spaces. 
650 2 4 |a Computational Science and Engineering. 
700 1 |a Bernstein, Swanhild.  |e editor. 
700 1 |a Kähler, Uwe.  |e editor. 
700 1 |a Sabadini, Irene.  |e editor. 
700 1 |a Sommen, Frank.  |e editor. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319087702 
830 0 |a Trends in Mathematics,  |x 2297-0215 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-08771-9  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)