Mathematical Modelling of Chromosome Replication and Replicative Stress

DNA replication is arguably the most crucial process at work in living cells. It is the mechanism by which organisms pass their genetic information from one generation to the next, and life on Earth would be unthinkable without it. Despite the discovery of DNA structure in the 1950s, the mechanism o...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Karschau, Jens (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2015.
Σειρά:Springer Theses, Recognizing Outstanding Ph.D. Research,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03124nam a22005415i 4500
001 978-3-319-08861-7
003 DE-He213
005 20151029221139.0
007 cr nn 008mamaa
008 140711s2015 gw | s |||| 0|eng d
020 |a 9783319088617  |9 978-3-319-08861-7 
024 7 |a 10.1007/978-3-319-08861-7  |2 doi 
040 |d GrThAP 
050 4 |a QH505 
072 7 |a PHVN  |2 bicssc 
072 7 |a PSF  |2 bicssc 
072 7 |a SCI009000  |2 bisacsh 
082 0 4 |a 571.4  |2 23 
100 1 |a Karschau, Jens.  |e author. 
245 1 0 |a Mathematical Modelling of Chromosome Replication and Replicative Stress  |h [electronic resource] /  |c by Jens Karschau. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2015. 
300 |a XIII, 76 p. 57 illus., 9 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Springer Theses, Recognizing Outstanding Ph.D. Research,  |x 2190-5053 
505 0 |a Introduction -- Optimal Origin Placement for Minimal Replication Time -- Actively Replicating Domains Randomly Associate into Replication Factories -- Summary and Conclusions. 
520 |a DNA replication is arguably the most crucial process at work in living cells. It is the mechanism by which organisms pass their genetic information from one generation to the next, and life on Earth would be unthinkable without it. Despite the discovery of DNA structure in the 1950s, the mechanism of its replication remains rather elusive.   This work makes important contributions to this line of research. In particular, it addresses two key questions in the area of DNA replication: which evolutionary forces drive the positioning of replication origins in the chromosome; and how is the spatial organization of replication factories achieved inside the nucleus of a cell?   A cross-disciplinary approach uniting physics and biology is at the heart of this research. Along with experimental support, statistical physics theory produces optimal origin positions and provides a model for replication fork assembly in yeast. Advances made here can potentially further our understanding of disease mechanisms such as the abnormal replication in cancer. 
650 0 |a Physics. 
650 0 |a Genetic engineering. 
650 0 |a Nucleic acids. 
650 0 |a Biophysics. 
650 0 |a Statistical physics. 
650 0 |a Dynamical systems. 
650 1 4 |a Physics. 
650 2 4 |a Physics of the Cell. 
650 2 4 |a Statistical Physics, Dynamical Systems and Complexity. 
650 2 4 |a Nucleic Acid Chemistry. 
650 2 4 |a Genetic Engineering. 
650 2 4 |a Numerical and Computational Physics. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319088600 
830 0 |a Springer Theses, Recognizing Outstanding Ph.D. Research,  |x 2190-5053 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-08861-7  |z Full Text via HEAL-Link 
912 |a ZDB-2-PHA 
950 |a Physics and Astronomy (Springer-11651)