Partitional Clustering Algorithms

This book summarizes the state-of-the-art in partitional clustering. Clustering, the unsupervised classification of patterns into groups, is one of the most important tasks in exploratory data analysis. Primary goals of clustering include gaining insight into, classifying, and compressing data. Clus...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Celebi, M. Emre (Επιμελητής έκδοσης)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2015.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03514nam a22004455i 4500
001 978-3-319-09259-1
003 DE-He213
005 20151204170743.0
007 cr nn 008mamaa
008 141107s2015 gw | s |||| 0|eng d
020 |a 9783319092591  |9 978-3-319-09259-1 
024 7 |a 10.1007/978-3-319-09259-1  |2 doi 
040 |d GrThAP 
050 4 |a TK1-9971 
072 7 |a TJK  |2 bicssc 
072 7 |a TEC041000  |2 bisacsh 
082 0 4 |a 621.382  |2 23 
245 1 0 |a Partitional Clustering Algorithms  |h [electronic resource] /  |c edited by M. Emre Celebi. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2015. 
300 |a X, 415 p. 78 illus., 45 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Recent developments in model-based clustering with applications -- Accelerating Lloyd’s algorithm for k-means clustering -- Linear, Deterministic, and Order-Invariant Initialization Methods for the K-Means Clustering Algorithm -- Nonsmooth optimization based algorithms in cluster analysis -- Fuzzy Clustering Algorithms and Validity Indices for Distributed Data -- Density Based Clustering: Alternatives to DBSCAN -- Nonnegative matrix factorization for interactive topic modeling and document clustering -- Overview of overlapping partitional clustering methods -- On Semi-Supervised Clustering -- Consensus of Clusterings based on High-order Dissimilarities -- Hubness-Based Clustering of High-Dimensional Data -- Clustering for Monitoring Distributed Data Streams. 
520 |a This book summarizes the state-of-the-art in partitional clustering. Clustering, the unsupervised classification of patterns into groups, is one of the most important tasks in exploratory data analysis. Primary goals of clustering include gaining insight into, classifying, and compressing data. Clustering has a long and rich history that spans a variety of scientific disciplines including anthropology, biology, medicine, psychology, statistics, mathematics, engineering, and computer science. As a result, numerous clustering algorithms have been proposed since the early 1950s. Among these algorithms, partitional (nonhierarchical) ones have found many applications, especially in engineering and computer science. This book provides coverage of consensus clustering, constrained clustering, large scale and/or high dimensional clustering, cluster validity, cluster visualization, and applications of clustering. Examines clustering as it applies to large and/or high-dimensional data sets commonly encountered in realistic applications; Discusses algorithms specifically designed for partitional clustering; Covers center-based, competitive learning, density-based, fuzzy, graph-based, grid-based, metaheuristic, and model-based approaches. 
650 0 |a Engineering. 
650 0 |a Computers. 
650 0 |a Electrical engineering. 
650 1 4 |a Engineering. 
650 2 4 |a Communications Engineering, Networks. 
650 2 4 |a Information Systems and Communication Service. 
650 2 4 |a Signal, Image and Speech Processing. 
700 1 |a Celebi, M. Emre.  |e editor. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319092584 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-09259-1  |z Full Text via HEAL-Link 
912 |a ZDB-2-ENG 
950 |a Engineering (Springer-11647)