Topology An Introduction /

This book provides a concise introduction to topology and is necessary for courses in differential geometry, functional analysis, algebraic topology, etc. Topology is a fundamental tool in most branches of pure mathematics and is also omnipresent in more applied parts of mathematics. Therefore stude...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Waldmann, Stefan (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2014.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 02130nam a22004095i 4500
001 978-3-319-09680-3
003 DE-He213
005 20140805124246.0
007 cr nn 008mamaa
008 140805s2014 gw | s |||| 0|eng d
020 |a 9783319096803  |9 978-3-319-09680-3 
024 7 |a 10.1007/978-3-319-09680-3  |2 doi 
040 |d GrThAP 
050 4 |a QA611-614.97 
072 7 |a PBP  |2 bicssc 
072 7 |a MAT038000  |2 bisacsh 
082 0 4 |a 514  |2 23 
100 1 |a Waldmann, Stefan.  |e author. 
245 1 0 |a Topology  |h [electronic resource] :  |b An Introduction /  |c by Stefan Waldmann. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2014. 
300 |a XII, 136 p. 17 illus., 13 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Introduction -- Topological Spaces and Continuity -- Construction of Topological Spaces -- Convergence in Topological Spaces -- Compactness -- Continuous Functions -- Baire’s Theorem. 
520 |a This book provides a concise introduction to topology and is necessary for courses in differential geometry, functional analysis, algebraic topology, etc. Topology is a fundamental tool in most branches of pure mathematics and is also omnipresent in more applied parts of mathematics. Therefore students will need fundamental topological notions already at an early stage in their bachelor programs. While there are already many excellent monographs on general topology, most of them are too large for a first bachelor course. Topology fills this gap and can be either used for self-study or as the basis of a topology course. 
650 0 |a Mathematics. 
650 0 |a Topology. 
650 1 4 |a Mathematics. 
650 2 4 |a Topology. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319096797 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-09680-3  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)