The Mathematics of Elections and Voting

The Mathematics of Elections and Voting  takes an in-depth look at the mathematics in the context of voting and electoral systems, with focus on simple ballots, complex elections, fairness, approval voting, ties, fair and unfair voting, and manipulation techniques. The exposition opens with a sketch...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Wallis, W.D (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2014.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03432nam a22005535i 4500
001 978-3-319-09810-4
003 DE-He213
005 20151204182709.0
007 cr nn 008mamaa
008 141008s2014 gw | s |||| 0|eng d
020 |a 9783319098104  |9 978-3-319-09810-4 
024 7 |a 10.1007/978-3-319-09810-4  |2 doi 
040 |d GrThAP 
050 4 |a QA273.A1-274.9 
050 4 |a QA274-274.9 
072 7 |a PBT  |2 bicssc 
072 7 |a PBWL  |2 bicssc 
072 7 |a MAT029000  |2 bisacsh 
082 0 4 |a 519.2  |2 23 
100 1 |a Wallis, W.D.  |e author. 
245 1 4 |a The Mathematics of Elections and Voting  |h [electronic resource] /  |c by W.D. Wallis. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2014. 
300 |a X, 96 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a 1.Introduction -- 2.Simple Elections I -- 3. Simple Elections II - Condorcet's Method -- 4. Fair Elections; Polls; Amendments -- 5. Arrow’s Theorem and the Gibbard-Satterthwaite Theorem -- 6. Complex Elections -- 7. Cardinal Systems -- 8. Weighted Voting. References. 
520 |a The Mathematics of Elections and Voting  takes an in-depth look at the mathematics in the context of voting and electoral systems, with focus on simple ballots, complex elections, fairness, approval voting, ties, fair and unfair voting, and manipulation techniques. The exposition opens with a sketch of the mathematics behind the various methods used in conducting elections. The reader is lead to a comprehensive picture of the theoretical background of mathematics and elections through an analysis of Condorcet’s Principle and Arrow’s Theorem of conditions in electoral fairness. Further detailed discussion of various related topics include: methods of manipulating the outcome of an election, amendments, and voting on small committees. In recent years, electoral theory has been introduced into lower-level mathematics courses, as a way to illustrate the role of mathematics in our everyday life.  Few books have studied voting and elections from a more formal mathematical viewpoint.  This text will be useful to those who teach lower level courses or special topics courses and aims to inspire students to understand the more advanced mathematics of the topic. The exercises in this text are ideal for upper undergraduate and early graduate students, as well as those with a keen interest in the mathematics behind voting and elections. . 
650 0 |a Mathematics. 
650 0 |a Political theory. 
650 0 |a Political economy. 
650 0 |a Game theory. 
650 0 |a Mathematical models. 
650 0 |a Probabilities. 
650 0 |a Population. 
650 1 4 |a Mathematics. 
650 2 4 |a Probability Theory and Stochastic Processes. 
650 2 4 |a Political Economy. 
650 2 4 |a Population Economics. 
650 2 4 |a Game Theory, Economics, Social and Behav. Sciences. 
650 2 4 |a Political Theory. 
650 2 4 |a Mathematical Modeling and Industrial Mathematics. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319098098 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-09810-4  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)