Essays on Gödel’s Reception of Leibniz, Husserl, and Brouwer

This volume tackles Gödel's two-stage project of first using Husserl's transcendental phenomenology to reconstruct and develop Leibniz' monadology, and then founding classical mathematics on the metaphysics thus obtained. The author analyses the historical and systematic aspects of th...

Full description

Bibliographic Details
Main Author: Atten, Mark van (Author)
Corporate Author: SpringerLink (Online service)
Format: Electronic eBook
Language:English
Published: Cham : Springer International Publishing : Imprint: Springer, 2015.
Series:Logic, Epistemology, and the Unity of Science, 35
Subjects:
Online Access:Full Text via HEAL-Link
LEADER 04619nam a22004815i 4500
001 978-3-319-10031-9
003 DE-He213
005 20160113141818.0
007 cr nn 008mamaa
008 141121s2015 gw | s |||| 0|eng d
020 |a 9783319100319  |9 978-3-319-10031-9 
024 7 |a 10.1007/978-3-319-10031-9  |2 doi 
040 |d GrThAP 
050 4 |a B829.5.A-829.5.Z 
072 7 |a HPCF3  |2 bicssc 
072 7 |a PHI018000  |2 bisacsh 
082 0 4 |a 142.7  |2 23 
100 1 |a Atten, Mark van.  |e author. 
245 1 0 |a Essays on Gödel’s Reception of Leibniz, Husserl, and Brouwer  |h [electronic resource] /  |c by Mark van Atten. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2015. 
300 |a XIV, 328 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Logic, Epistemology, and the Unity of Science,  |x 2214-9775 ;  |v 35 
505 0 |a Chapter 1. Introduction -- Part I Gödel and Leibniz -- Chapter 2 A note on Leibniz’s argument against infinite wholes -- Chapter 3. Monads and sets: on Gödel, Leibniz, and the Reflection Principle -- Chapter 4. Gödel’s Dialectica Interpretation and Leibniz -- Part II Gödel and Husserl -- Chapter 5. Phenomenology of mathematics -- Chapter 6. On the philosophical development of Kurt Gödel (with Juliette Kennedy) -- Chapter 7. Gödel, mathematics, and possible worlds -- Chapter 8. Two draft letters from Gödel on self-knowledge of Reason -- Part III Gödel and Brouwer -- Chapter 9. Gödel and Brouwer: two rivalling brothers -- Chapter 10. Mysticism and mathematics: Brouwer, Gödel, and the common core thesis (with Robert Tragesser) -- Chapter 11. Gödel and intuitionism -- Part IV A partial assessment -- Chapter 12. Construction and constitution in mathematics. <. 
520 |a This volume tackles Gödel's two-stage project of first using Husserl's transcendental phenomenology to reconstruct and develop Leibniz' monadology, and then founding classical mathematics on the metaphysics thus obtained. The author analyses the historical and systematic aspects of that project, and then evaluates it, with an emphasis on the second stage. The book is organised around Gödel's use of Leibniz, Husserl and Brouwer. Far from considering past philosophers irrelevant to actual systematic concerns, Gödel embraced the use of historical authors to frame his own philosophical perspective. The philosophies of Leibniz and Husserl define his project, while Brouwer's intuitionism is its principal foil: the close affinities between phenomenology and intuitionism set the bar for Gödel's attempt to go far beyond intuitionism. The four central essays are `Monads and sets', `On the philosophical development of Kurt Gödel', `Gödel and intuitionism', and `Construction and constitution in mathematics'. The first analyses and criticises Gödel's attempt to justify, by an argument from analogy with the monadology, the reflection principle in set theory. It also provides further support for Gödel's idea that the monadology needs to be reconstructed phenomenologically, by showing that the unsupplemented monadology is not able to found mathematics directly. The second studies Gödel's reading of Husserl, its relation to Leibniz' monadology, and its influence on his publishe d writings. The third discusses how on various occasions Brouwer's intuitionism actually inspired Gödel's work, in particular the Dialectica Interpretation. The fourth addresses the question whether classical mathematics admits of the phenomenological foundation that Gödel envisaged, and concludes that it does not. The remaining essays provide further context.  The essays collected here were written and published over the last decade. Notes have been added to record further thoughts, changes of mind, connections between the essays, and updates of references. 
650 0 |a Philosophy. 
650 0 |a Philosophy and science. 
650 0 |a Phenomenology. 
650 0 |a Mathematical logic. 
650 1 4 |a Philosophy. 
650 2 4 |a Phenomenology. 
650 2 4 |a Mathematical Logic and Foundations. 
650 2 4 |a Philosophy of Science. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319100302 
830 0 |a Logic, Epistemology, and the Unity of Science,  |x 2214-9775 ;  |v 35 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-10031-9  |z Full Text via HEAL-Link 
912 |a ZDB-2-SHU 
950 |a Humanities, Social Sciences and Law (Springer-11648)