Essays on Gödel’s Reception of Leibniz, Husserl, and Brouwer
This volume tackles Gödel's two-stage project of first using Husserl's transcendental phenomenology to reconstruct and develop Leibniz' monadology, and then founding classical mathematics on the metaphysics thus obtained. The author analyses the historical and systematic aspects of th...
Κύριος συγγραφέας: | |
---|---|
Συγγραφή απο Οργανισμό/Αρχή: | |
Μορφή: | Ηλεκτρονική πηγή Ηλ. βιβλίο |
Γλώσσα: | English |
Έκδοση: |
Cham :
Springer International Publishing : Imprint: Springer,
2015.
|
Σειρά: | Logic, Epistemology, and the Unity of Science,
35 |
Θέματα: | |
Διαθέσιμο Online: | Full Text via HEAL-Link |
Πίνακας περιεχομένων:
- Chapter 1. Introduction
- Part I Gödel and Leibniz
- Chapter 2 A note on Leibniz’s argument against infinite wholes
- Chapter 3. Monads and sets: on Gödel, Leibniz, and the Reflection Principle
- Chapter 4. Gödel’s Dialectica Interpretation and Leibniz
- Part II Gödel and Husserl
- Chapter 5. Phenomenology of mathematics
- Chapter 6. On the philosophical development of Kurt Gödel (with Juliette Kennedy)
- Chapter 7. Gödel, mathematics, and possible worlds
- Chapter 8. Two draft letters from Gödel on self-knowledge of Reason
- Part III Gödel and Brouwer
- Chapter 9. Gödel and Brouwer: two rivalling brothers
- Chapter 10. Mysticism and mathematics: Brouwer, Gödel, and the common core thesis (with Robert Tragesser)
- Chapter 11. Gödel and intuitionism
- Part IV A partial assessment
- Chapter 12. Construction and constitution in mathematics. <.