The Problem of Catalan

In 1842 the Belgian mathematician Eugène Charles Catalan asked whether 8 and 9 are the only consecutive pure powers of non-zero integers. 160 years after, the question was answered affirmatively by the Swiss mathematician of Romanian origin Preda Mihăilescu. In this book we give a complete and (almo...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Bilu, Yuri F. (Συγγραφέας), Bugeaud, Yann (Συγγραφέας), Mignotte, Maurice (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2014.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 02785nam a22004695i 4500
001 978-3-319-10094-4
003 DE-He213
005 20141009193309.0
007 cr nn 008mamaa
008 141009s2014 gw | s |||| 0|eng d
020 |a 9783319100944  |9 978-3-319-10094-4 
024 7 |a 10.1007/978-3-319-10094-4  |2 doi 
040 |d GrThAP 
050 4 |a QA241-247.5 
072 7 |a PBH  |2 bicssc 
072 7 |a MAT022000  |2 bisacsh 
082 0 4 |a 512.7  |2 23 
100 1 |a Bilu, Yuri F.  |e author. 
245 1 4 |a The Problem of Catalan  |h [electronic resource] /  |c by Yuri F. Bilu, Yann Bugeaud, Maurice Mignotte. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2014. 
300 |a XIV, 245 p. 3 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a An Historical Account -- Even Exponents -- Cassels' Relations -- Cyclotomic Fields -- Dirichlet L-Series and Class Number Formulas -- Higher Divisibility Theorems -- Gauss Sums and Stickelberger's Theorem -- Mihăilescu’s Ideal -- The Real Part of Mihăilescu’s Ideal -- Cyclotomic units -- Selmer Group and Proof of Catalan's Conjecture -- The Theorem of Thaine -- Baker's Method and Tijdeman's Argument -- Appendix A: Number Fields -- Appendix B: Heights -- Appendix C: Commutative Rings, Modules, Semi-Simplicity -- Appendix D: Group Rings and Characters -- Appendix E: Reduction and Torsion of Finite G-Modules -- Appendix F: Radical Extensions. 
520 |a In 1842 the Belgian mathematician Eugène Charles Catalan asked whether 8 and 9 are the only consecutive pure powers of non-zero integers. 160 years after, the question was answered affirmatively by the Swiss mathematician of Romanian origin Preda Mihăilescu. In this book we give a complete and (almost) self-contained exposition of Mihăilescu’s work, which must be understandable by a curious university student, not necessarily specializing in Number Theory. We assume very modest background: a standard university course of algebra, including basic Galois theory, and working knowledge of basic algebraic number theory. 
650 0 |a Mathematics. 
650 0 |a Algebra. 
650 0 |a Number theory. 
650 1 4 |a Mathematics. 
650 2 4 |a Number Theory. 
650 2 4 |a General Algebraic Systems. 
650 2 4 |a Algebra. 
700 1 |a Bugeaud, Yann.  |e author. 
700 1 |a Mignotte, Maurice.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319100937 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-10094-4  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)