The Problem of Catalan
In 1842 the Belgian mathematician Eugène Charles Catalan asked whether 8 and 9 are the only consecutive pure powers of non-zero integers. 160 years after, the question was answered affirmatively by the Swiss mathematician of Romanian origin Preda Mihăilescu. In this book we give a complete and (almo...
Κύριοι συγγραφείς: | , , |
---|---|
Συγγραφή απο Οργανισμό/Αρχή: | |
Μορφή: | Ηλεκτρονική πηγή Ηλ. βιβλίο |
Γλώσσα: | English |
Έκδοση: |
Cham :
Springer International Publishing : Imprint: Springer,
2014.
|
Θέματα: | |
Διαθέσιμο Online: | Full Text via HEAL-Link |
Πίνακας περιεχομένων:
- An Historical Account
- Even Exponents
- Cassels' Relations
- Cyclotomic Fields
- Dirichlet L-Series and Class Number Formulas
- Higher Divisibility Theorems
- Gauss Sums and Stickelberger's Theorem
- Mihăilescu’s Ideal
- The Real Part of Mihăilescu’s Ideal
- Cyclotomic units
- Selmer Group and Proof of Catalan's Conjecture
- The Theorem of Thaine
- Baker's Method and Tijdeman's Argument
- Appendix A: Number Fields
- Appendix B: Heights
- Appendix C: Commutative Rings, Modules, Semi-Simplicity
- Appendix D: Group Rings and Characters
- Appendix E: Reduction and Torsion of Finite G-Modules
- Appendix F: Radical Extensions.