Time-Varying Vector Fields and Their Flows

This short book provides a comprehensive and unified treatment of time-varying vector fields under a variety of regularity hypotheses, namely finitely differentiable, Lipschitz, smooth, holomorphic, and real analytic. The presentation of this material in the real analytic setting is new, as is the m...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Jafarpour, Saber (Συγγραφέας), Lewis, Andrew D. (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2014.
Σειρά:SpringerBriefs in Mathematics,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 02871nam a22005415i 4500
001 978-3-319-10139-2
003 DE-He213
005 20151030091310.0
007 cr nn 008mamaa
008 141010s2014 gw | s |||| 0|eng d
020 |a 9783319101392  |9 978-3-319-10139-2 
024 7 |a 10.1007/978-3-319-10139-2  |2 doi 
040 |d GrThAP 
050 4 |a Q295 
050 4 |a QA402.3-402.37 
072 7 |a GPFC  |2 bicssc 
072 7 |a SCI064000  |2 bisacsh 
072 7 |a TEC004000  |2 bisacsh 
082 0 4 |a 519  |2 23 
100 1 |a Jafarpour, Saber.  |e author. 
245 1 0 |a Time-Varying Vector Fields and Their Flows  |h [electronic resource] /  |c by Saber Jafarpour, Andrew D. Lewis. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2014. 
300 |a VIII, 119 p. 9 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a SpringerBriefs in Mathematics,  |x 2191-8198 
505 0 |a Introduction -- Fibre Metrics for Jet Bundles -- Finitely Differentiable, Lipschitz, and Smooth Topologies -- The COhol-topology for the Space of Holomorphic Vector Fields -- The Cw-topology for the Space of Real Analytic Vector Fields -- Time-Varying Vector Fields -- References. 
520 |a This short book provides a comprehensive and unified treatment of time-varying vector fields under a variety of regularity hypotheses, namely finitely differentiable, Lipschitz, smooth, holomorphic, and real analytic. The presentation of this material in the real analytic setting is new, as is the manner in which the various hypotheses are unified using functional analysis. Indeed, a major contribution of the book is the coherent development of locally convex topologies for the space of real analytic sections of a vector bundle, and the development of this in a manner that relates easily to classically known topologies in, for example, the finitely differentiable and smooth cases. The tools used in this development will be of use to researchers in the area of geometric functional analysis. 
650 0 |a Mathematics. 
650 0 |a Topological groups. 
650 0 |a Lie groups. 
650 0 |a Dynamics. 
650 0 |a Ergodic theory. 
650 0 |a System theory. 
650 1 4 |a Mathematics. 
650 2 4 |a Systems Theory, Control. 
650 2 4 |a Dynamical Systems and Ergodic Theory. 
650 2 4 |a Topological Groups, Lie Groups. 
700 1 |a Lewis, Andrew D.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319101385 
830 0 |a SpringerBriefs in Mathematics,  |x 2191-8198 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-10139-2  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)