Variational Inequalities and Frictional Contact Problems

Variational Inequalities and Frictional Contact Problems contains a carefully selected collection of results on elliptic and evolutionary quasi-variational inequalities including existence, uniqueness, regularity, dual formulations, numerical approximations and error estimates ones. By using a wide...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Capatina, Anca (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2014.
Σειρά:Advances in Mechanics and Mathematics, 31
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04189nam a22005295i 4500
001 978-3-319-10163-7
003 DE-He213
005 20151204153334.0
007 cr nn 008mamaa
008 140916s2014 gw | s |||| 0|eng d
020 |a 9783319101637  |9 978-3-319-10163-7 
024 7 |a 10.1007/978-3-319-10163-7  |2 doi 
040 |d GrThAP 
050 4 |a QA613-613.8 
050 4 |a QA613.6-613.66 
072 7 |a PBMS  |2 bicssc 
072 7 |a PBPH  |2 bicssc 
072 7 |a MAT038000  |2 bisacsh 
082 0 4 |a 514.34  |2 23 
100 1 |a Capatina, Anca.  |e author. 
245 1 0 |a Variational Inequalities and Frictional Contact Problems  |h [electronic resource] /  |c by Anca Capatina. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2014. 
300 |a X, 235 p. 4 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Advances in Mechanics and Mathematics,  |x 1571-8689 ;  |v 31 
505 0 |a Introduction -- Part I: Preliminaries -- Spaces of Real-valued Functions -- Spaces of Vector-valued Functions -- Part II: Variational Inequalities -- Existence and Uniqueness Results -- Some Properties of Solutions -- Dual Formulations -- Approximations of Variational Inequalities -- Part III: Contact Problems with Friction in Elasticity -- Static Problems -- Quasistatic Problems. 
520 |a Variational Inequalities and Frictional Contact Problems contains a carefully selected collection of results on elliptic and evolutionary quasi-variational inequalities including existence, uniqueness, regularity, dual formulations, numerical approximations and error estimates ones. By using a wide range of methods and arguments, the results are presented in a constructive way, with clarity and well justified proofs. This approach makes the subjects accessible to mathematicians and applied mathematicians. Moreover, this part of the book can be used as an excellent background for the investigation of more general classes of variational inequalities. The abstract variational inequalities considered in this book cover the variational formulations of many static and quasi-static contact problems. Based on these abstract results, in the last part of the book, certain static and quasi-static frictional contact problems in elasticity are studied in an almost exhaustive way. The readers will find a systematic and unified exposition on classical, variational and dual formulations, existence, uniqueness and regularity results, finite element approximations and related optimal control problems. This part of the book is an update of the Signorini problem with nonlocal Coulomb friction, a problem little studied and with few results in the literature. Also, in the quasi-static case, a control problem governed by a bilateral contact problem is studied. Despite the theoretical nature of the presented results, the book provides a background for the numerical analysis of contact problems. The materials presented are accessible to both graduate/under graduate students and to researchers in applied mathematics, mechanics, and engineering. The obtained results have numerous applications in mechanics, engineering and geophysics. The book contains a good amount of original results which, in this unified form, cannot be found anywhere else. 
650 0 |a Mathematics. 
650 0 |a Differential geometry. 
650 0 |a Manifolds (Mathematics). 
650 0 |a Complex manifolds. 
650 0 |a Applied mathematics. 
650 0 |a Engineering mathematics. 
650 1 4 |a Mathematics. 
650 2 4 |a Manifolds and Cell Complexes (incl. Diff.Topology). 
650 2 4 |a Differential Geometry. 
650 2 4 |a Appl.Mathematics/Computational Methods of Engineering. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319101620 
830 0 |a Advances in Mechanics and Mathematics,  |x 1571-8689 ;  |v 31 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-10163-7  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)