Inverse M-Matrices and Ultrametric Matrices

The study of M-matrices, their inverses and discrete potential theory is now a well-established part of linear algebra and the theory of Markov chains. The main focus of this monograph is the so-called inverse M-matrix problem, which asks for a characterization of nonnegative matrices whose inverses...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Dellacherie, Claude (Συγγραφέας), Martinez, Servet (Συγγραφέας), San Martin, Jaime (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2014.
Σειρά:Lecture Notes in Mathematics, 2118
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03077nam a22005175i 4500
001 978-3-319-10298-6
003 DE-He213
005 20151103124329.0
007 cr nn 008mamaa
008 141114s2014 gw | s |||| 0|eng d
020 |a 9783319102986  |9 978-3-319-10298-6 
024 7 |a 10.1007/978-3-319-10298-6  |2 doi 
040 |d GrThAP 
050 4 |a QA404.7-405 
072 7 |a PBWL  |2 bicssc 
072 7 |a MAT033000  |2 bisacsh 
082 0 4 |a 515.96  |2 23 
100 1 |a Dellacherie, Claude.  |e author. 
245 1 0 |a Inverse M-Matrices and Ultrametric Matrices  |h [electronic resource] /  |c by Claude Dellacherie, Servet Martinez, Jaime San Martin. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2014. 
300 |a X, 236 p. 14 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 2118 
505 0 |a Inverse M - matrices and potentials -- Ultrametric Matrices -- Graph of Ultrametric Type Matrices -- Filtered Matrices -- Hadamard Functions of Inverse M - matrices -- Notes and Comments Beyond Matrices -- Basic Matrix Block Formulae -- Symbolic Inversion of a Diagonally Dominant M - matrices -- Bibliography -- Index of Notations -- Index. 
520 |a The study of M-matrices, their inverses and discrete potential theory is now a well-established part of linear algebra and the theory of Markov chains. The main focus of this monograph is the so-called inverse M-matrix problem, which asks for a characterization of nonnegative matrices whose inverses are M-matrices. We present an answer in terms of discrete potential theory based on the Choquet-Deny Theorem. A distinguished subclass of inverse M-matrices is ultrametric matrices, which are important in applications such as taxonomy. Ultrametricity is revealed to be a relevant concept in linear algebra and discrete potential theory because of its relation with trees in graph theory and mean expected value matrices in probability theory. Remarkable properties of Hadamard functions and products for the class of inverse M-matrices are developed and probabilistic insights are provided throughout the monograph. 
650 0 |a Mathematics. 
650 0 |a Potential theory (Mathematics). 
650 0 |a Game theory. 
650 0 |a Probabilities. 
650 1 4 |a Mathematics. 
650 2 4 |a Potential Theory. 
650 2 4 |a Probability Theory and Stochastic Processes. 
650 2 4 |a Game Theory, Economics, Social and Behav. Sciences. 
700 1 |a Martinez, Servet.  |e author. 
700 1 |a San Martin, Jaime.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319102979 
830 0 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 2118 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-10298-6  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
912 |a ZDB-2-LNM 
950 |a Mathematics and Statistics (Springer-11649)