Introductory Statistical Inference with the Likelihood Function

This textbook covers the fundamentals of statistical inference and statistical theory including Bayesian and frequentist approaches and methodology possible without excessive emphasis on the underlying mathematics. This book is about some of the basic principles of statistics that are necessary to u...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Rohde, Charles A. (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2014.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 02646nam a22004215i 4500
001 978-3-319-10461-4
003 DE-He213
005 20151204155938.0
007 cr nn 008mamaa
008 141031s2014 gw | s |||| 0|eng d
020 |a 9783319104614  |9 978-3-319-10461-4 
024 7 |a 10.1007/978-3-319-10461-4  |2 doi 
040 |d GrThAP 
050 4 |a QA276-280 
072 7 |a PBT  |2 bicssc 
072 7 |a MBNS  |2 bicssc 
072 7 |a MED090000  |2 bisacsh 
082 0 4 |a 519.5  |2 23 
100 1 |a Rohde, Charles A.  |e author. 
245 1 0 |a Introductory Statistical Inference with the Likelihood Function  |h [electronic resource] /  |c by Charles A. Rohde. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2014. 
300 |a XVI, 332 p. 12 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
520 |a This textbook covers the fundamentals of statistical inference and statistical theory including Bayesian and frequentist approaches and methodology possible without excessive emphasis on the underlying mathematics. This book is about some of the basic principles of statistics that are necessary to understand and evaluate methods for analyzing complex data sets. The likelihood function is used for pure likelihood inference throughout the book. There is also coverage of severity and finite population sampling. The material was developed from an introductory statistical theory course taught by the author at the Johns Hopkins University’s Department of Biostatistics. Students and instructors in public health programs will benefit from the likelihood modeling approach that is used throughout the text. This will also appeal to epidemiologists and psychometricians.  After a brief introduction, there are chapters on estimation, hypothesis testing, and maximum likelihood modeling. The book concludes with sections on Bayesian computation and inference. An appendix contains unique coverage of the interpretation of probability, and coverage of probability and mathematical concepts. 
650 0 |a Statistics. 
650 1 4 |a Statistics. 
650 2 4 |a Statistics for Life Sciences, Medicine, Health Sciences. 
650 2 4 |a Statistical Theory and Methods. 
650 2 4 |a Statistics, general. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319104607 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-10461-4  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)