Probabilistic Diophantine Approximation Randomness in Lattice Point Counting /

This book gives a comprehensive treatment of random phenomena and distribution results in diophantine approximation, with a particular emphasis on quadratic irrationals. It covers classical material on the subject as well as many new results developed by the author over the past decade. A range of i...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Beck, József (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2014.
Σειρά:Springer Monographs in Mathematics,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 02777nam a22004575i 4500
001 978-3-319-10741-7
003 DE-He213
005 20151103131531.0
007 cr nn 008mamaa
008 141004s2014 gw | s |||| 0|eng d
020 |a 9783319107417  |9 978-3-319-10741-7 
024 7 |a 10.1007/978-3-319-10741-7  |2 doi 
040 |d GrThAP 
050 4 |a QA241-247.5 
072 7 |a PBH  |2 bicssc 
072 7 |a MAT022000  |2 bisacsh 
082 0 4 |a 512.7  |2 23 
100 1 |a Beck, József.  |e author. 
245 1 0 |a Probabilistic Diophantine Approximation  |h [electronic resource] :  |b Randomness in Lattice Point Counting /  |c by József Beck. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2014. 
300 |a XVI, 487 p. 22 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Springer Monographs in Mathematics,  |x 1439-7382 
505 0 |a Preface.- 1 What is "probabilistic" diophantine approximation?.- 2 Expectation, and its connection with quadratic fields.- 3 Variance, and its connection with quadratic fields.- 4 Proving randomness.- 5 Pell equation, super irregularity and randomness.- 6 More on randomness -- References -- Index. 
520 |a This book gives a comprehensive treatment of random phenomena and distribution results in diophantine approximation, with a particular emphasis on quadratic irrationals. It covers classical material on the subject as well as many new results developed by the author over the past decade. A range of ideas from other areas of mathematics are brought to bear with surprising connections to topics such as formulae for class numbers, special values of L-functions, and Dedekind sums. Care is taken to elaborate difficult proofs by motivating major steps and accompanying them with background explanations, enabling the reader to learn the theory and relevant techniques. Written by one of the acknowledged experts in the field, Probabilistic Diophantine Approximation is presented in a clear and informal style with sufficient detail to appeal to both advanced students and researchers in number theory. 
650 0 |a Mathematics. 
650 0 |a Number theory. 
650 0 |a Probabilities. 
650 1 4 |a Mathematics. 
650 2 4 |a Number Theory. 
650 2 4 |a Probability Theory and Stochastic Processes. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319107400 
830 0 |a Springer Monographs in Mathematics,  |x 1439-7382 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-10741-7  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)