Berkovich Spaces and Applications

We present an introduction to Berkovich’s theory of non-archimedean analytic spaces that emphasizes its applications in various fields. The first part contains surveys of a foundational nature, including an introduction to Berkovich analytic spaces by M. Temkin, and to étale cohomology by A. Ducros,...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Ducros, Antoine (Επιμελητής έκδοσης), Favre, Charles (Επιμελητής έκδοσης), Nicaise, Johannes (Επιμελητής έκδοσης)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2015.
Σειρά:Lecture Notes in Mathematics, 2119
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03688nam a22005415i 4500
001 978-3-319-11029-5
003 DE-He213
005 20151204191653.0
007 cr nn 008mamaa
008 141121s2015 gw | s |||| 0|eng d
020 |a 9783319110295  |9 978-3-319-11029-5 
024 7 |a 10.1007/978-3-319-11029-5  |2 doi 
040 |d GrThAP 
050 4 |a QA564-609 
072 7 |a PBMW  |2 bicssc 
072 7 |a MAT012010  |2 bisacsh 
082 0 4 |a 516.35  |2 23 
245 1 0 |a Berkovich Spaces and Applications  |h [electronic resource] /  |c edited by Antoine Ducros, Charles Favre, Johannes Nicaise. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2015. 
300 |a XIX, 413 p. 18 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 2119 
505 0 |a Introduction to Berkovich analytic spaces -- Etale cohomology of schemes and analytic spaces -- Countability properties of Berkovich spaces -- Cohomological finiteness of proper morphisms in algebraic geometry: a purely transcendental proof, without projective tools -- Bruhat-Tits buildings and analytic geometry -- Dynamics on Berkovich spaces in low dimensions -- Compactifications of spaces of representations (after Culler, Morgan and Shalen). 
520 |a We present an introduction to Berkovich’s theory of non-archimedean analytic spaces that emphasizes its applications in various fields. The first part contains surveys of a foundational nature, including an introduction to Berkovich analytic spaces by M. Temkin, and to étale cohomology by A. Ducros, as well as a short note by C. Favre on the topology of some Berkovich spaces. The second part focuses on applications to geometry. A second text by A. Ducros contains a new proof of the fact that the higher direct images of a coherent sheaf under a proper map are coherent, and B. Rémy, A. Thuillier and A. Werner provide an overview of their work on the compactification of Bruhat-Tits buildings using Berkovich analytic geometry. The third and final part explores the relationship between non-archimedean geometry and dynamics. A contribution by M. Jonsson contains a thorough discussion of non-archimedean dynamical systems in dimension 1 and 2. Finally a survey by J.-P. Otal gives an account of Morgan-Shalen's theory of compactification of character varieties. This book will provide the reader with enough material on the basic concepts and constructions related to Berkovich spaces to move on to more advanced research articles on the subject. We also hope that the applications presented here will inspire the reader to discover new settings where these beautiful and intricate objects might arise. 
650 0 |a Mathematics. 
650 0 |a Algebraic geometry. 
650 0 |a Topological groups. 
650 0 |a Lie groups. 
650 0 |a Dynamics. 
650 0 |a Ergodic theory. 
650 1 4 |a Mathematics. 
650 2 4 |a Algebraic Geometry. 
650 2 4 |a Dynamical Systems and Ergodic Theory. 
650 2 4 |a Topological Groups, Lie Groups. 
700 1 |a Ducros, Antoine.  |e editor. 
700 1 |a Favre, Charles.  |e editor. 
700 1 |a Nicaise, Johannes.  |e editor. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319110288 
830 0 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 2119 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-11029-5  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
912 |a ZDB-2-LNM 
950 |a Mathematics and Statistics (Springer-11649)