The Mathematical Theory of Time-Harmonic Maxwell's Equations Expansion-, Integral-, and Variational Methods /

This book gives a concise introduction to the basic techniques needed for the theoretical analysis of the Maxwell Equations, and filters in an elegant way the essential parts, e.g., concerning the various function spaces needed to rigorously investigate the boundary integral equations and variationa...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Kirsch, Andreas (Συγγραφέας), Hettlich, Frank (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2015.
Σειρά:Applied Mathematical Sciences, 190
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03225nam a22005295i 4500
001 978-3-319-11086-8
003 DE-He213
005 20151109192050.0
007 cr nn 008mamaa
008 141119s2015 gw | s |||| 0|eng d
020 |a 9783319110868  |9 978-3-319-11086-8 
024 7 |a 10.1007/978-3-319-11086-8  |2 doi 
040 |d GrThAP 
050 4 |a QA370-380 
072 7 |a PBKJ  |2 bicssc 
072 7 |a MAT007000  |2 bisacsh 
082 0 4 |a 515.353  |2 23 
100 1 |a Kirsch, Andreas.  |e author. 
245 1 4 |a The Mathematical Theory of Time-Harmonic Maxwell's Equations  |h [electronic resource] :  |b Expansion-, Integral-, and Variational Methods /  |c by Andreas Kirsch, Frank Hettlich. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2015. 
300 |a XIII, 337 p. 3 illus., 1 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Applied Mathematical Sciences,  |x 0066-5452 ;  |v 190 
505 0 |a Introduction -- Expansion into Wave Functions -- Scattering From a Perfect Conductor -- The Variational Approach to the Cavity Problem -- Boundary Integral Equation Methods for Lipschitz Domains -- Appendix -- References -- Index. 
520 |a This book gives a concise introduction to the basic techniques needed for the theoretical analysis of the Maxwell Equations, and filters in an elegant way the essential parts, e.g., concerning the various function spaces needed to rigorously investigate the boundary integral equations and variational equations. The book arose from lectures taught by the authors over many years and can be helpful in designing graduate courses for mathematically orientated students on electromagnetic wave propagation problems. The students should have some knowledge on vector analysis (curves, surfaces, divergence theorem) and functional analysis (normed spaces, Hilbert spaces, linear and bounded operators, dual space). Written in an accessible manner, topics are first approached with simpler scale Helmholtz Equations before turning to Maxwell Equations. There are examples and exercises throughout the book. It will be useful for graduate students and researchers in applied mathematics and engineers working in the theoretical approach to electromagnetic wave propagation. 
650 0 |a Mathematics. 
650 0 |a Functional analysis. 
650 0 |a Partial differential equations. 
650 0 |a Numerical analysis. 
650 0 |a Applied mathematics. 
650 0 |a Engineering mathematics. 
650 1 4 |a Mathematics. 
650 2 4 |a Partial Differential Equations. 
650 2 4 |a Functional Analysis. 
650 2 4 |a Appl.Mathematics/Computational Methods of Engineering. 
650 2 4 |a Numerical Analysis. 
700 1 |a Hettlich, Frank.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319110851 
830 0 |a Applied Mathematical Sciences,  |x 0066-5452 ;  |v 190 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-11086-8  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)