Advances in Complex Data Modeling and Computational Methods in Statistics

The book is addressed to statisticians working at the forefront of the statistical analysis of complex and high dimensional data and offers a wide variety of statistical models, computer intensive methods and applications: network inference from the analysis of high dimensional data; new development...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Paganoni, Anna Maria (Επιμελητής έκδοσης), Secchi, Piercesare (Επιμελητής έκδοσης)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2015.
Σειρά:Contributions to Statistics,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04738nam a22005415i 4500
001 978-3-319-11149-0
003 DE-He213
005 20151030101517.0
007 cr nn 008mamaa
008 141104s2015 gw | s |||| 0|eng d
020 |a 9783319111490  |9 978-3-319-11149-0 
024 7 |a 10.1007/978-3-319-11149-0  |2 doi 
040 |d GrThAP 
050 4 |a QA276-280 
072 7 |a PBT  |2 bicssc 
072 7 |a MAT029000  |2 bisacsh 
082 0 4 |a 519.5  |2 23 
245 1 0 |a Advances in Complex Data Modeling and Computational Methods in Statistics  |h [electronic resource] /  |c edited by Anna Maria Paganoni, Piercesare Secchi. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2015. 
300 |a VIII, 209 p. 41 illus., 27 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Contributions to Statistics,  |x 1431-1968 
505 0 |a 1 Antonino Abbruzzo, Angelo M. Mineo: Inferring networks from high-dimensional data with mixed variables -- 2 Federico Andreis, Fulvia Mecatti: Rounding Non-integer Weights in Bootstrapping Non-iid Samples: actual problem or harmless practice? -- 3 Marika Arena, Giovanni Azzone, Antonio Conte, Piercesare Secchi, Simone Vantini: Measuring downsize reputational risk in the Oil & Gas industry -- 4 Laura Azzimonti, Marzia A. Cremona, Andrea Ghiglietti, Francesca Ieva, Alessandra Menafoglio, Alessia Pini, Paolo Zanini: BARCAMP Technology Foresight and Statistics for the Future -- 5 Francesca Chiaromonte, Kateryna D. Makova: Using statistics to shed light on the dynamics of the human genome: A review -- 6 Nader Ebrahimi, Ehsan S. Soofi and Refik Soyer: Information Theory and Bayesian Reliability Analysis: Recent Advances -- 7 Stephan F. Huckemann: (Semi-) Intrinsic Statistical Analysis on non-Euclidean Spaces -- 8 John T. Kent: An investigation of projective shape space -- 9 Fabio Manfredini, Paola Pucci, Piercesare Secchi, Paolo Tagliolato, Simone Vantini, Valeria Vitelli: Treelet Decomposition of Mobile Phone Data for Deriving City Usage and Mobility Pattern in the Milan Urban Region -- 10 Cristina Mazzali, Mauro Maistriello, Francesca Ieva, Pietro Barbieri: Methodological issues in the use of administrative databases to study heart failure -- 11 Andrea Mercatant: Bayesian inference for randomized experiments with noncompliance and nonignorable missing data -- 12 Antonio Pulcini, Brunero Liseo: Approximate Bayesian Quantile Regression for Panel Data -- 13 Laura M. Sangalli: Estimating surfaces and spatial fields via regression models with differential regularization.  . 
520 |a The book is addressed to statisticians working at the forefront of the statistical analysis of complex and high dimensional data and offers a wide variety of statistical models, computer intensive methods and applications: network inference from the analysis of high dimensional data; new developments for bootstrapping complex data; regression analysis for measuring the downsize reputational risk; statistical methods for research on the human genome dynamics; inference in non-euclidean settings and for shape data; Bayesian methods for reliability and the analysis of complex data; methodological issues in using administrative data for clinical and epidemiological research; regression models with differential regularization; geostatistical methods for mobility analysis through mobile phone data exploration. This volume is the result of a careful selection among the contributions presented at the conference "S.Co.2013: Complex data modeling and computationally intensive methods for estimation and prediction" held at the Politecnico di Milano, 2013. All the papers published here have been rigorously peer-reviewed. 
650 0 |a Statistics. 
650 0 |a Software engineering. 
650 0 |a Biostatistics. 
650 0 |a Applied mathematics. 
650 0 |a Engineering mathematics. 
650 0 |a Complexity, Computational. 
650 1 4 |a Statistics. 
650 2 4 |a Statistical Theory and Methods. 
650 2 4 |a Applications of Mathematics. 
650 2 4 |a Biostatistics. 
650 2 4 |a Complexity. 
650 2 4 |a Software Engineering/Programming and Operating Systems. 
700 1 |a Paganoni, Anna Maria.  |e editor. 
700 1 |a Secchi, Piercesare.  |e editor. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319111483 
830 0 |a Contributions to Statistics,  |x 1431-1968 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-11149-0  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)