Computational Counterpoint Worlds Mathematical Theory, Software, and Experiments /

The mathematical theory of counterpoint was originally aimed at simulating the composition rules described in Johann Joseph Fux’s Gradus ad Parnassum. It soon became apparent that the algebraic apparatus used in this model could also serve to define entirely new systems of rules for composition, gen...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Agustín-Aquino, Octavio Alberto (Συγγραφέας), Junod, Julien (Συγγραφέας), Mazzola, Guerino (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2015.
Σειρά:Computational Music Science,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 02961nam a22005055i 4500
001 978-3-319-11236-7
003 DE-He213
005 20151204155454.0
007 cr nn 008mamaa
008 150708s2015 gw | s |||| 0|eng d
020 |a 9783319112367  |9 978-3-319-11236-7 
024 7 |a 10.1007/978-3-319-11236-7  |2 doi 
040 |d GrThAP 
050 4 |a NX260 
072 7 |a H  |2 bicssc 
072 7 |a UB  |2 bicssc 
072 7 |a COM018000  |2 bisacsh 
072 7 |a ART000000  |2 bisacsh 
082 0 4 |a 004  |2 23 
100 1 |a Agustín-Aquino, Octavio Alberto.  |e author. 
245 1 0 |a Computational Counterpoint Worlds  |h [electronic resource] :  |b Mathematical Theory, Software, and Experiments /  |c by Octavio Alberto Agustín-Aquino, Julien Junod, Guerino Mazzola. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2015. 
300 |a X, 220 p. 57 illus., 16 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Computational Music Science,  |x 1868-0305 
505 0 |a Counterpoint -- First-Species Model -- Preliminary Background -- Quasipolarities and Interval Dichotomies -- Towers of Counterpoint -- Graphs -- Transformations -- Implementation -- Second-Species Model -- Hypergesture Homology -- Glossary -- Index. 
520 |a The mathematical theory of counterpoint was originally aimed at simulating the composition rules described in Johann Joseph Fux’s Gradus ad Parnassum. It soon became apparent that the algebraic apparatus used in this model could also serve to define entirely new systems of rules for composition, generated by new choices of consonances and dissonances, which in turn lead to new restrictions governing the succession of intervals.   This is the first book bringing together recent developments and perspectives on mathematical counterpoint theory in detail. The authors include recent theoretical results on counterpoint worlds, the extension of counterpoint to microtonal pitch systems, the singular homology of counterpoint models, and the software implementation of contrapuntal models.   The book is suitable for graduates and researchers. A good command of algebra is a prerequisite for understanding the construction of the model. 
650 0 |a Computer science. 
650 0 |a Music. 
650 0 |a Application software. 
650 1 4 |a Computer Science. 
650 2 4 |a Computer Appl. in Arts and Humanities. 
650 2 4 |a Music. 
700 1 |a Junod, Julien.  |e author. 
700 1 |a Mazzola, Guerino.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319112350 
830 0 |a Computational Music Science,  |x 1868-0305 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-11236-7  |z Full Text via HEAL-Link 
912 |a ZDB-2-SCS 
950 |a Computer Science (Springer-11645)