On Hierarchical Models for Visual Recognition and Learning of Objects, Scenes, and Activities

In many computer vision applications, objects have to be learned and recognized in images or image sequences. This book presents new probabilistic hierarchical models that allow an efficient representation of multiple objects of different categories, scales, rotations, and views. The idea is to expl...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Spehr, Jens (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2015.
Σειρά:Studies in Systems, Decision and Control, 11
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03216nam a22005415i 4500
001 978-3-319-11325-8
003 DE-He213
005 20151218161455.0
007 cr nn 008mamaa
008 141113s2015 gw | s |||| 0|eng d
020 |a 9783319113258  |9 978-3-319-11325-8 
024 7 |a 10.1007/978-3-319-11325-8  |2 doi 
040 |d GrThAP 
050 4 |a TJ210.2-211.495 
050 4 |a T59.5 
072 7 |a TJFM1  |2 bicssc 
072 7 |a TEC037000  |2 bisacsh 
072 7 |a TEC004000  |2 bisacsh 
082 0 4 |a 629.892  |2 23 
100 1 |a Spehr, Jens.  |e author. 
245 1 0 |a On Hierarchical Models for Visual Recognition and Learning of Objects, Scenes, and Activities  |h [electronic resource] /  |c by Jens Spehr. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2015. 
300 |a XV, 199 p. 107 illus., 92 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Studies in Systems, Decision and Control,  |x 2198-4182 ;  |v 11 
505 0 |a Introduction -- Probabilistic Graphical Models -- Hierarchical Graphical Models -- Learning of Hierarchical Models.-Object Recognition -- Human Pose Estimation -- Scene Understanding for Intelligent Vehicles -- Conclusion. 
520 |a In many computer vision applications, objects have to be learned and recognized in images or image sequences. This book presents new probabilistic hierarchical models that allow an efficient representation of multiple objects of different categories, scales, rotations, and views. The idea is to exploit similarities between objects and object parts in order to share calculations and avoid redundant information. Furthermore inference approaches for fast and robust detection are presented. These new approaches combine the idea of compositional and similarity hierarchies and overcome limitations of previous methods. Besides classical object recognition the book shows the use for detection of human poses in a project for gait analysis. The use of activity detection is presented for the design of environments for ageing, to identify activities and behavior patterns in smart homes. In a presented project for parking spot detection using an intelligent vehicle, the proposed approaches are used to hierarchically model the environment of the vehicle for an efficient and robust interpretation of the scene in real-time. 
650 0 |a Engineering. 
650 0 |a Image processing. 
650 0 |a Pattern recognition. 
650 0 |a Computational intelligence. 
650 0 |a Robotics. 
650 0 |a Automation. 
650 1 4 |a Engineering. 
650 2 4 |a Robotics and Automation. 
650 2 4 |a Computational Intelligence. 
650 2 4 |a Image Processing and Computer Vision. 
650 2 4 |a Pattern Recognition. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319113241 
830 0 |a Studies in Systems, Decision and Control,  |x 2198-4182 ;  |v 11 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-11325-8  |z Full Text via HEAL-Link 
912 |a ZDB-2-ENG 
950 |a Engineering (Springer-11647)