Geometric Invariant Theory for Polarized Curves

We investigate GIT quotients of polarized curves. More specifically, we study the GIT problem for the Hilbert and Chow schemes of curves of degree d and genus g in a projective space of dimension d-g, as d decreases with respect to g. We prove that the first three values of d at which the GIT quotie...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Bini, Gilberto (Συγγραφέας), Felici, Fabio (Συγγραφέας), Melo, Margarida (Συγγραφέας), Viviani, Filippo (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2014.
Σειρά:Lecture Notes in Mathematics, 2122
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03355nam a22004815i 4500
001 978-3-319-11337-1
003 DE-He213
005 20151103123855.0
007 cr nn 008mamaa
008 141107s2014 gw | s |||| 0|eng d
020 |a 9783319113371  |9 978-3-319-11337-1 
024 7 |a 10.1007/978-3-319-11337-1  |2 doi 
040 |d GrThAP 
050 4 |a QA564-609 
072 7 |a PBMW  |2 bicssc 
072 7 |a MAT012010  |2 bisacsh 
082 0 4 |a 516.35  |2 23 
100 1 |a Bini, Gilberto.  |e author. 
245 1 0 |a Geometric Invariant Theory for Polarized Curves  |h [electronic resource] /  |c by Gilberto Bini, Fabio Felici, Margarida Melo, Filippo Viviani. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2014. 
300 |a X, 211 p. 17 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 2122 
505 0 |a Introduction -- Singular Curves -- Combinatorial Results -- Preliminaries on GIT -- Potential Pseudo-stability Theorem -- Stabilizer Subgroups -- Behavior at the Extremes of the Basic Inequality -- A Criterion of Stability for Tails -- Elliptic Tails and Tacnodes with a Line -- A Strati_cation of the Semistable Locus -- Semistable, Polystable and Stable Points (part I) -- Stability of Elliptic Tails -- Semistable, Polystable and Stable Points (part II) -- Geometric Properties of the GIT Quotient -- Extra Components of the GIT Quotient -- Compacti_cations of the Universal Jacobian -- Appendix: Positivity Properties of Balanced Line Bundles.  . 
520 |a We investigate GIT quotients of polarized curves. More specifically, we study the GIT problem for the Hilbert and Chow schemes of curves of degree d and genus g in a projective space of dimension d-g, as d decreases with respect to g. We prove that the first three values of d at which the GIT quotients change are given by d=a(2g-2) where a=2, 3.5, 4. We show that, for a>4, L. Caporaso's results hold true for both Hilbert and Chow semistability. If 3.5<a<4, the Hilbert semistable locus coincides with the Chow semistable locus and it maps to the moduli stack of weakly-pseudo-stable curves. If 2<a<3.5, the Hilbert and Chow semistable loci coincide and they map to the moduli stack of pseudo-stable curves. We also analyze in detail the critical values a=3.5 and a=4, where the Hilbert semistable locus is strictly smaller than the Chow semistable locus. As an application, we obtain three compactications of the universal Jacobian over the moduli space of stable curves, weakly-pseudo-stable curves and pseudo-stable curves, respectively. 
650 0 |a Mathematics. 
650 0 |a Algebraic geometry. 
650 1 4 |a Mathematics. 
650 2 4 |a Algebraic Geometry. 
700 1 |a Felici, Fabio.  |e author. 
700 1 |a Melo, Margarida.  |e author. 
700 1 |a Viviani, Filippo.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319113364 
830 0 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 2122 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-11337-1  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
912 |a ZDB-2-LNM 
950 |a Mathematics and Statistics (Springer-11649)