Geometric Invariant Theory for Polarized Curves
We investigate GIT quotients of polarized curves. More specifically, we study the GIT problem for the Hilbert and Chow schemes of curves of degree d and genus g in a projective space of dimension d-g, as d decreases with respect to g. We prove that the first three values of d at which the GIT quotie...
Κύριοι συγγραφείς: | , , , |
---|---|
Συγγραφή απο Οργανισμό/Αρχή: | |
Μορφή: | Ηλεκτρονική πηγή Ηλ. βιβλίο |
Γλώσσα: | English |
Έκδοση: |
Cham :
Springer International Publishing : Imprint: Springer,
2014.
|
Σειρά: | Lecture Notes in Mathematics,
2122 |
Θέματα: | |
Διαθέσιμο Online: | Full Text via HEAL-Link |
Πίνακας περιεχομένων:
- Introduction
- Singular Curves
- Combinatorial Results
- Preliminaries on GIT
- Potential Pseudo-stability Theorem
- Stabilizer Subgroups
- Behavior at the Extremes of the Basic Inequality
- A Criterion of Stability for Tails
- Elliptic Tails and Tacnodes with a Line
- A Strati_cation of the Semistable Locus
- Semistable, Polystable and Stable Points (part I)
- Stability of Elliptic Tails
- Semistable, Polystable and Stable Points (part II)
- Geometric Properties of the GIT Quotient
- Extra Components of the GIT Quotient
- Compacti_cations of the Universal Jacobian
- Appendix: Positivity Properties of Balanced Line Bundles. .