Formal Algorithmic Elimination for PDEs

Investigating the correspondence between systems of partial differential equations and their analytic solutions using a formal approach, this monograph presents algorithms to determine the set of analytic solutions of such a system and conversely to find differential equations whose set of solutions...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Robertz, Daniel (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2014.
Σειρά:Lecture Notes in Mathematics, 2121
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03086nam a22005655i 4500
001 978-3-319-11445-3
003 DE-He213
005 20151103124238.0
007 cr nn 008mamaa
008 141013s2014 gw | s |||| 0|eng d
020 |a 9783319114453  |9 978-3-319-11445-3 
024 7 |a 10.1007/978-3-319-11445-3  |2 doi 
040 |d GrThAP 
050 4 |a QA161.A-161.Z 
050 4 |a QA161.P59 
072 7 |a PBF  |2 bicssc 
072 7 |a MAT002010  |2 bisacsh 
082 0 4 |a 512.3  |2 23 
100 1 |a Robertz, Daniel.  |e author. 
245 1 0 |a Formal Algorithmic Elimination for PDEs  |h [electronic resource] /  |c by Daniel Robertz. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2014. 
300 |a VIII, 283 p. 6 illus., 3 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 2121 
505 0 |a Introduction -- Formal Methods for PDE Systems -- Differential Elimination for Analytic Functions -- Basic Principles and Supplementary Material -- References -- List of Algorithms -- List of Examples -- Index of Notation -- Index. 
520 |a Investigating the correspondence between systems of partial differential equations and their analytic solutions using a formal approach, this monograph presents algorithms to determine the set of analytic solutions of such a system and conversely to find differential equations whose set of solutions coincides with a given parametrized set of analytic functions. After giving a detailed introduction to Janet bases and Thomas decomposition, the problem of finding an implicit description of certain sets of analytic functions in terms of differential equations is addressed. Effective methods of varying generality are developed to solve the differential elimination problems that arise in this context. In particular, it is demonstrated how the symbolic solution of partial differential equations profits from the study of the implicitization problem. For instance, certain families of exact solutions of the Navier-Stokes equations can be computed. 
650 0 |a Mathematics. 
650 0 |a Associative rings. 
650 0 |a Rings (Algebra). 
650 0 |a Commutative algebra. 
650 0 |a Commutative rings. 
650 0 |a Algebra. 
650 0 |a Field theory (Physics). 
650 0 |a Partial differential equations. 
650 1 4 |a Mathematics. 
650 2 4 |a Field Theory and Polynomials. 
650 2 4 |a Commutative Rings and Algebras. 
650 2 4 |a Associative Rings and Algebras. 
650 2 4 |a Partial Differential Equations. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319114446 
830 0 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 2121 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-11445-3  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
912 |a ZDB-2-LNM 
950 |a Mathematics and Statistics (Springer-11649)