Introduction to the Representation Theory of Algebras

This book gives a general introduction to the theory of representations of algebras. It starts with examples of classification problems of matrices under linear transformations and explains the three common setups: representation of quivers, modules over algebras and additive functors over certain c...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Barot, Michael (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2015.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 02850nam a22004815i 4500
001 978-3-319-11475-0
003 DE-He213
005 20151204173001.0
007 cr nn 008mamaa
008 141229s2015 gw | s |||| 0|eng d
020 |a 9783319114750  |9 978-3-319-11475-0 
024 7 |a 10.1007/978-3-319-11475-0  |2 doi 
040 |d GrThAP 
050 4 |a QA251.5 
072 7 |a PBF  |2 bicssc 
072 7 |a MAT002010  |2 bisacsh 
082 0 4 |a 512.46  |2 23 
100 1 |a Barot, Michael.  |e author. 
245 1 0 |a Introduction to the Representation Theory of Algebras  |h [electronic resource] /  |c by Michael Barot. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2015. 
300 |a X, 179 p. 109 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Matrix Problems -- Representations of Quivers -- Algebras -- Module Categories -- Elements of Homological Algebra -- The Auslander-Reiten Theory -- Knitting -- Combinatorial Invariants -- Indecomposables and Dimensions. 
520 |a This book gives a general introduction to the theory of representations of algebras. It starts with examples of classification problems of matrices under linear transformations and explains the three common setups: representation of quivers, modules over algebras and additive functors over certain categories. The main part is devoted to (i) module categories, presenting the unicity of the decomposition into indecomposable modules, the Auslander–Reiten theory and the technique of knitting; (ii) the use of combinatorial tools such as dimension vectors and integral quadratic forms; and (iii) deeper theorems such as Gabriel‘s Theorem, the trichotomy and the Theorem of Kac – all accompanied by further examples. Each section includes exercises to facilitate understanding. By keeping the proofs as basic and comprehensible as possible and introducing the three languages at the beginning, this book is suitable for readers from the advanced undergraduate level onwards and enables them to consult related, specific research articles. 
650 0 |a Mathematics. 
650 0 |a Associative rings. 
650 0 |a Rings (Algebra). 
650 0 |a Category theory (Mathematics). 
650 0 |a Homological algebra. 
650 0 |a Algebra. 
650 1 4 |a Mathematics. 
650 2 4 |a Associative Rings and Algebras. 
650 2 4 |a Category Theory, Homological Algebra. 
650 2 4 |a General Algebraic Systems. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319114743 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-11475-0  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)