Gottlieb and Whitehead Center Groups of Spheres, Projective and Moore Spaces

This is a monograph that details the use of Siegel’s method and the classical results of homotopy groups of spheres and Lie groups to determine some Gottlieb groups of projective spaces or to give the lower bounds of their orders. Making use of the properties of Whitehead products, the authors also...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Golasiński, Marek (Συγγραφέας), Mukai, Juno (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2014.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 02347nam a22005295i 4500
001 978-3-319-11517-7
003 DE-He213
005 20151103141020.0
007 cr nn 008mamaa
008 141107s2014 gw | s |||| 0|eng d
020 |a 9783319115177  |9 978-3-319-11517-7 
024 7 |a 10.1007/978-3-319-11517-7  |2 doi 
040 |d GrThAP 
050 4 |a QA639.5-640.7 
050 4 |a QA640.7-640.77 
072 7 |a PBMW  |2 bicssc 
072 7 |a PBD  |2 bicssc 
072 7 |a MAT012020  |2 bisacsh 
072 7 |a MAT008000  |2 bisacsh 
082 0 4 |a 516.1  |2 23 
100 1 |a Golasiński, Marek.  |e author. 
245 1 0 |a Gottlieb and Whitehead Center Groups of Spheres, Projective and Moore Spaces  |h [electronic resource] /  |c by Marek Golasiński, Juno Mukai. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2014. 
300 |a XVII, 132 p. 7 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Introduction -- Gottlieb groups of Spheres -- Gottlieb and Whitehead Center Groups of Projective Spaces -- Gottlieb and Whitehead Center Groups of Moore Spaces. 
520 |a This is a monograph that details the use of Siegel’s method and the classical results of homotopy groups of spheres and Lie groups to determine some Gottlieb groups of projective spaces or to give the lower bounds of their orders. Making use of the properties of Whitehead products, the authors also determine some Whitehead center groups of projective spaces that are relevant and new within this monograph. 
650 0 |a Mathematics. 
650 0 |a Category theory (Mathematics). 
650 0 |a Homological algebra. 
650 0 |a Convex geometry. 
650 0 |a Discrete geometry. 
650 0 |a Differential geometry. 
650 1 4 |a Mathematics. 
650 2 4 |a Convex and Discrete Geometry. 
650 2 4 |a Differential Geometry. 
650 2 4 |a Category Theory, Homological Algebra. 
700 1 |a Mukai, Juno.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319115160 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-11517-7  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)