Large Deviations and Asymptotic Methods in Finance

Topics covered in this volume (large deviations, differential geometry, asymptotic expansions, central limit theorems) give a full picture of the current advances in the application of asymptotic methods in mathematical finance, and thereby provide rigorous solutions to important mathematical and fi...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Friz, Peter K. (Επιμελητής έκδοσης), Gatheral, Jim (Επιμελητής έκδοσης), Gulisashvili, Archil (Επιμελητής έκδοσης), Jacquier, Antoine (Επιμελητής έκδοσης), Teichmann, Josef (Επιμελητής έκδοσης)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2015.
Σειρά:Springer Proceedings in Mathematics & Statistics, 110
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04958nam a22005655i 4500
001 978-3-319-11605-1
003 DE-He213
005 20151103125859.0
007 cr nn 008mamaa
008 150616s2015 gw | s |||| 0|eng d
020 |a 9783319116051  |9 978-3-319-11605-1 
024 7 |a 10.1007/978-3-319-11605-1  |2 doi 
040 |d GrThAP 
050 4 |a HB135-147 
072 7 |a KF  |2 bicssc 
072 7 |a MAT003000  |2 bisacsh 
072 7 |a BUS027000  |2 bisacsh 
082 0 4 |a 519  |2 23 
245 1 0 |a Large Deviations and Asymptotic Methods in Finance  |h [electronic resource] /  |c edited by Peter K. Friz, Jim Gatheral, Archil Gulisashvili, Antoine Jacquier, Josef Teichmann. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2015. 
300 |a IX, 590 p. 26 illus., 14 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Springer Proceedings in Mathematics & Statistics,  |x 2194-1009 ;  |v 110 
505 0 |a Hagan, Lesniewski, Woodward: Probability Distribution in the SABR Model of Stochastic Volatility -- Paulot: Asymptotic Implied Volatility at the Second Order with Application to the SABR Model -- Henry-Labordere: Unifying the BGM and SABR Models: A Short Ride in Hyperbolic Geometry -- Ben Arous, Laurence: Second Order Expansion for Implied Volatility in Two Factor Local-stochastic Volatility -- Osajima: General Asymptotics of Wiener Functionals and Application to Implied Volatilities -- Bayer, Laurence: Small-time asymptotics for the at-the-money implied volatility in a multi-dimensional local volatility model -- Keller-Ressel, Teichmann: A Remark on Gatheral's 'Most-likely Path Approximation' of Implied Volatility -- Gatheral, Wang: Implied volatility from local volatility: a path integral approach -- Gerhold, Friz: Don't Stay Local - Extrapolation Analytics for Dupire's Local Volatility -- Gulisashvili, Teichmann: Laplace Principle Expansions and Short Time Asymptotics for Affine Processes --  Lorig, Pascucci, Pagliarani: Asymptotics for d-dimensional Levy-type Processes -- Takahashi: An Asymptotic Expansion Approach in Finance -- Baudoin, Ouyang: On small time asymptotics for rough differential equations driven by fractional Brownian motions --  Lucic: On singularities in the Heston model.-  Bayer, Friz, Laurence: On the probability density function of baskets -- Conforti, De Marco, Deuschel: On small-noise equations with degenerate limiting system arising from volatility models -- Pham: Long time asymptotic problems for optimal investment -- Spiliopoulos: Systemic Risk and Default Clustering for Large Financial Systems -- Jacod, Rosenbaum: Asymptotic Properties of a Volatility Estimator. 
520 |a Topics covered in this volume (large deviations, differential geometry, asymptotic expansions, central limit theorems) give a full picture of the current advances in the application of asymptotic methods in mathematical finance, and thereby provide rigorous solutions to important mathematical and financial issues, such as implied volatility asymptotics, local volatility extrapolation, systemic risk and volatility estimation. This volume gathers together ground-breaking results in this field by some of its leading experts. Over the past decade, asymptotic methods have played an increasingly important role in the study of the behaviour of (financial) models. These methods provide a useful alternative to numerical methods in settings where the latter may lose accuracy (in extremes such as small and large strikes, and small maturities), and lead to a clearer understanding of the behaviour of models, and of the influence of parameters on this behaviour. Graduate students, researchers and practitioners will find this book very useful, and the diversity of topics will appeal to people from mathematical finance, probability theory and differential geometry. 
650 0 |a Mathematics. 
650 0 |a Approximation theory. 
650 0 |a Economics, Mathematical. 
650 0 |a Differential geometry. 
650 0 |a Probabilities. 
650 1 4 |a Mathematics. 
650 2 4 |a Quantitative Finance. 
650 2 4 |a Probability Theory and Stochastic Processes. 
650 2 4 |a Approximations and Expansions. 
650 2 4 |a Differential Geometry. 
700 1 |a Friz, Peter K.  |e editor. 
700 1 |a Gatheral, Jim.  |e editor. 
700 1 |a Gulisashvili, Archil.  |e editor. 
700 1 |a Jacquier, Antoine.  |e editor. 
700 1 |a Teichmann, Josef.  |e editor. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319116044 
830 0 |a Springer Proceedings in Mathematics & Statistics,  |x 2194-1009 ;  |v 110 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-11605-1  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)