Set Operads in Combinatorics and Computer Science

This monograph has two main objectives. The first one is to give a self-contained exposition of the relevant facts about set operads, in the context of combinatorial species and its operations. This approach has various advantages: one of them is that the definition of combinatorial operations on sp...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Méndez, Miguel A. (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2015.
Σειρά:SpringerBriefs in Mathematics,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 02825nam a22004935i 4500
001 978-3-319-11713-3
003 DE-He213
005 20151030061250.0
007 cr nn 008mamaa
008 150108s2015 gw | s |||| 0|eng d
020 |a 9783319117133  |9 978-3-319-11713-3 
024 7 |a 10.1007/978-3-319-11713-3  |2 doi 
040 |d GrThAP 
050 4 |a QA351 
072 7 |a PBKF  |2 bicssc 
072 7 |a MAT034000  |2 bisacsh 
072 7 |a MAT037000  |2 bisacsh 
082 0 4 |a 515.5  |2 23 
100 1 |a Méndez, Miguel A.  |e author. 
245 1 0 |a Set Operads in Combinatorics and Computer Science  |h [electronic resource] /  |c by Miguel A. Méndez. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2015. 
300 |a XV, 129 p. 62 illus., 43 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a SpringerBriefs in Mathematics,  |x 2191-8198 
505 0 |a Introduction -- Preliminaries on Species and Set Operads -- Operations on Species and Set Operads -- Decomposition Theory -- Rigid Operads -- Posets from Cancellative Operads and Koszul Duality -- Appendix. 
520 |a This monograph has two main objectives. The first one is to give a self-contained exposition of the relevant facts about set operads, in the context of combinatorial species and its operations. This approach has various advantages: one of them is that the definition of combinatorial operations on species, product, sum, substitution and derivative, are simple and natural. They were designed as the set theoretical counterparts of the homonym operations on exponential generating functions, giving an immediate insight on the combinatorial meaning of them. The second objective is more ambitious. Before formulating it, authors present a brief historic account on the sources of decomposition theory. For more than forty years decompositions of discrete structures have been studied in different branches of discrete mathematics: combinatorial optimization, network and graph theory, switching design or boolean functions, simple multi-person games and clutters, etc. 
650 0 |a Mathematics. 
650 0 |a Operator theory. 
650 0 |a Special functions. 
650 0 |a System theory. 
650 1 4 |a Mathematics. 
650 2 4 |a Special Functions. 
650 2 4 |a Complex Systems. 
650 2 4 |a Operator Theory. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319117126 
830 0 |a SpringerBriefs in Mathematics,  |x 2191-8198 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-11713-3  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)