Linear Models in Matrix Form A Hands-On Approach for the Behavioral Sciences /

This textbook is an approachable introduction to statistical analysis using matrix algebra. Prior knowledge of matrix algebra is not necessary. Advanced topics are easy to follow through analyses that were performed on an open-source spreadsheet using a few built-in functions. These topics include o...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Brown, Jonathon D. (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2014.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03286nam a22004335i 4500
001 978-3-319-11734-8
003 DE-He213
005 20151204185813.0
007 cr nn 008mamaa
008 150121s2014 gw | s |||| 0|eng d
020 |a 9783319117348  |9 978-3-319-11734-8 
024 7 |a 10.1007/978-3-319-11734-8  |2 doi 
040 |d GrThAP 
050 4 |a QA276-280 
072 7 |a JHBC  |2 bicssc 
072 7 |a SOC027000  |2 bisacsh 
082 0 4 |a 519.5  |2 23 
100 1 |a Brown, Jonathon D.  |e author. 
245 1 0 |a Linear Models in Matrix Form  |h [electronic resource] :  |b A Hands-On Approach for the Behavioral Sciences /  |c by Jonathon D. Brown. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2014. 
300 |a XIX, 536 p. 77 illus., 28 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Matrix Properties and Operations -- Simple Linear Regression -- Maximum Likelihood Estimation -- Multiple Regression -- Matrix Decompositions -- Problematic Observations -- Errors and Residuals -- Linearizing Transformations and Nonparametric Smoothers -- Cross-Product Terms and Interactions -- Polynomial Regression -- Categorical Predictors -- Factorial Designs -- Analysis of Covariance -- Moderation -- Mediation. 
520 |a This textbook is an approachable introduction to statistical analysis using matrix algebra. Prior knowledge of matrix algebra is not necessary. Advanced topics are easy to follow through analyses that were performed on an open-source spreadsheet using a few built-in functions. These topics include ordinary linear regression, as well as maximum likelihood estimation, matrix decompositions, nonparametric smoothers and penalized cubic splines. Each data set (1) contains a limited number of observations to encourage readers to do the calculations themselves, and (2) tells a coherent story based on statistical significance and confidence intervals. In this way, students will learn how the numbers were generated and how they can be used to make cogent arguments about everyday matters. This textbook is designed for use in upper level undergraduate courses or first year graduate courses. The first chapter introduces students to linear equations, then covers matrix algebra, focusing on three essential operations: sum of squares, the determinant, and the inverse. These operations are explained in everyday language, and their calculations are demonstrated using concrete examples. The remaining chapters build on these operations, progressing from simple linear regression to mediational models with bootstrapped standard errors. 
650 0 |a Statistics. 
650 0 |a Psychometrics. 
650 1 4 |a Statistics. 
650 2 4 |a Statistics for Social Science, Behavorial Science, Education, Public Policy, and Law. 
650 2 4 |a Psychometrics. 
650 2 4 |a Statistical Theory and Methods. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319117331 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-11734-8  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)