A Topological Introduction to Nonlinear Analysis
This third edition of A Topological Introduction to Nonlinear Analysis is addressed to the mathematician or graduate student of mathematics - or even the well-prepared undergraduate - who would like, with a minimum of background and preparation, to understand some of the beautiful results at the hea...
Κύριος συγγραφέας: | |
---|---|
Συγγραφή απο Οργανισμό/Αρχή: | |
Μορφή: | Ηλεκτρονική πηγή Ηλ. βιβλίο |
Γλώσσα: | English |
Έκδοση: |
Cham :
Springer International Publishing : Imprint: Birkhäuser,
2014.
|
Έκδοση: | 3rd ed. 2014. |
Θέματα: | |
Διαθέσιμο Online: | Full Text via HEAL-Link |
Πίνακας περιεχομένων:
- Preface
- Part I Fixed Point Existence Theory
- The Topological Point of View
- Ascoli-Arzela Theory
- Brouwer Fixed Point Theory
- Schauder Fixed Point Theory
- The Forced Pendulum
- Equilibrium Heat Distribution
- Generalized Bernstain Theory
- Part II Degree Theory
- Brouwer Degree
- Properties of the Brouwer Degree
- Leray-Schauder Degree
- Properties of the Leray-Schauder Degree
- The Mawhin Operator
- The Pendulum Swings back
- Part III Fixed Point Index Theory
- A Retraction Theorum
- The Fixed Point Index
- The Tubulur Reactor
- Fixed Points in a Cone
- Eigenvalues and Eigenvectors
- Part IV Bifurcation Theory
- A Separation Theorem
- Compact Linear Operators
- The Degree Calculation
- The Krasnoselskii-Rabinowitz Theorem
- Nonlinear Strum Liouville Theory
- More Strum Liouville Theory
- Euler Buckling
- Part V Appendices.