Improving Infrared-Based Precipitation Retrieval Algorithms Using Multi-Spectral Satellite Imagery

This thesis transforms satellite precipitation estimation through the integration of a multi-sensor, multi-channel approach to current precipitation estimation algorithms, and provides more accurate readings of precipitation data from space.  Using satellite data to estimate precipitation from space...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Nasrollahi, Nasrin (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2015.
Σειρά:Springer Theses, Recognizing Outstanding Ph.D. Research,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03147nam a22005055i 4500
001 978-3-319-12081-2
003 DE-He213
005 20151030111409.0
007 cr nn 008mamaa
008 141107s2015 gw | s |||| 0|eng d
020 |a 9783319120812  |9 978-3-319-12081-2 
024 7 |a 10.1007/978-3-319-12081-2  |2 doi 
040 |d GrThAP 
050 4 |a QC851-999 
072 7 |a RB  |2 bicssc 
072 7 |a SCI042000  |2 bisacsh 
082 0 4 |a 551.5  |2 23 
100 1 |a Nasrollahi, Nasrin.  |e author. 
245 1 0 |a Improving Infrared-Based Precipitation Retrieval Algorithms Using Multi-Spectral Satellite Imagery  |h [electronic resource] /  |c by Nasrin Nasrollahi. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2015. 
300 |a XXI, 68 p. 41 illus., 38 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Springer Theses, Recognizing Outstanding Ph.D. Research,  |x 2190-5053 
505 0 |a Introduction to the Current States of Satellite Precipitation Products -- False Alarm in Satellite Precipitation Data -- Satellite Observations -- Reducing False Rain in Satellite Precipitation Products Using CloudSat Cloud Classification Maps and MODIS Multi-Spectral Images -- Integration of CloudSat Precipitation Profile in Reduction of False Rain -- Cloud Classification and its Application in Reducing False Rain -- Summary and Conclusions. 
520 |a This thesis transforms satellite precipitation estimation through the integration of a multi-sensor, multi-channel approach to current precipitation estimation algorithms, and provides more accurate readings of precipitation data from space.  Using satellite data to estimate precipitation from space overcomes the limitation of ground-based observations in terms of availability over remote areas and oceans as well as spatial coverage. However, the accuracy of satellite-based estimates still need to be improved.  The approach introduced in this thesis takes advantage of the recent NASA satellites in observing clouds and precipitation. In addition, machine-learning techniques are also employed to make the best use of remotely-sensed "big data." The results provide a significant improvement in detecting non-precipitating areas and reducing false identification of precipitation. 
650 0 |a Earth sciences. 
650 0 |a Meteorology. 
650 0 |a Atmospheric sciences. 
650 0 |a Geophysics. 
650 0 |a Environmental sciences. 
650 1 4 |a Earth Sciences. 
650 2 4 |a Atmospheric Sciences. 
650 2 4 |a Geophysics and Environmental Physics. 
650 2 4 |a Meteorology. 
650 2 4 |a Environmental Physics. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319120805 
830 0 |a Springer Theses, Recognizing Outstanding Ph.D. Research,  |x 2190-5053 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-12081-2  |z Full Text via HEAL-Link 
912 |a ZDB-2-EES 
950 |a Earth and Environmental Science (Springer-11646)