Spatio-Temporal Data Analytics for Wind Energy Integration

This SpringerBrief presents spatio-temporal data analytics for wind energy integration using stochastic modeling and optimization methods. It explores techniques for efficiently integrating renewable energy generation into bulk power grids. The operational challenges of wind, and its variability are...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Yang, Lei (Συγγραφέας), He, Miao (Συγγραφέας), Zhang, Junshan (Συγγραφέας), Vittal, Vijay (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2014.
Σειρά:SpringerBriefs in Electrical and Computer Engineering,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03283nam a22005895i 4500
001 978-3-319-12319-6
003 DE-He213
005 20151030071201.0
007 cr nn 008mamaa
008 141114s2014 gw | s |||| 0|eng d
020 |a 9783319123196  |9 978-3-319-12319-6 
024 7 |a 10.1007/978-3-319-12319-6  |2 doi 
040 |d GrThAP 
050 4 |a TJ807-830 
072 7 |a THX  |2 bicssc 
072 7 |a TEC031010  |2 bisacsh 
082 0 4 |a 621.042  |2 23 
100 1 |a Yang, Lei.  |e author. 
245 1 0 |a Spatio-Temporal Data Analytics for Wind Energy Integration  |h [electronic resource] /  |c by Lei Yang, Miao He, Junshan Zhang, Vijay Vittal. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2014. 
300 |a VIII, 80 p. 34 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a SpringerBriefs in Electrical and Computer Engineering,  |x 2191-8112 
505 0 |a Introduction -- A Spatio-Temporal Analysis Approach for Short-Term Forecast of Wind Farm Generation -- Support Vector Machine Enhanced Markov Model for Short-Term Wind Power Forecast -- Stochastic Optimization based Economic Dispatch and Interruptible Load Management -- Conclusions and Future Works. 
520 |a This SpringerBrief presents spatio-temporal data analytics for wind energy integration using stochastic modeling and optimization methods. It explores techniques for efficiently integrating renewable energy generation into bulk power grids. The operational challenges of wind, and its variability are carefully examined. A spatio-temporal analysis approach enables the authors to develop Markov-chain-based short-term forecasts of wind farm power generation. To deal with the wind ramp dynamics, a support vector machine enhanced Markov model is introduced. The stochastic optimization of economic dispatch (ED) and interruptible load management are investigated as well. Spatio-Temporal Data Analytics for Wind Energy Integration is valuable for researchers and professionals working towards renewable energy integration. Advanced-level students studying electrical, computer and energy engineering should also find the content useful. 
650 0 |a Energy. 
650 0 |a Renewable energy resources. 
650 0 |a Energy policy. 
650 0 |a Energy and state. 
650 0 |a Data mining. 
650 0 |a Electric power production. 
650 0 |a Renewable energy sources. 
650 0 |a Alternate energy sources. 
650 0 |a Green energy industries. 
650 1 4 |a Energy. 
650 2 4 |a Renewable and Green Energy. 
650 2 4 |a Data Mining and Knowledge Discovery. 
650 2 4 |a Energy Policy, Economics and Management. 
650 2 4 |a Energy Technology. 
700 1 |a He, Miao.  |e author. 
700 1 |a Zhang, Junshan.  |e author. 
700 1 |a Vittal, Vijay.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783319123189 
830 0 |a SpringerBriefs in Electrical and Computer Engineering,  |x 2191-8112 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-12319-6  |z Full Text via HEAL-Link 
912 |a ZDB-2-ENE 
950 |a Energy (Springer-40367)